
AD-A274 129

• • ••.IIIIIII.II

A PARALLEL COMPUTATIONAL FLUID DYNAMICS
UNSTRUCTURED GRID GENERATOR

THESIS

Deborah E. Davis, Captain, USAF

AFIT/GCSIENG/93D-05

Approved for public release; distribution unlimited

,3k06 93-30963
93 12 22 037 J1l1lll

AFIT/GCS/ENG/93D-05

A PARALLEL COMPUTATIONAL FLUID DYNAMICS

UNSTRUCTURED GRID GENERATOR

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Deborah E. Davis, B.S. r .. ; .

Captain, USAF J

By

December 1993 Di,

Approved for public release; distribution unlimited Dist _______

DTIC QUALITY IN•:PECTED 3

The purpose of this research was to develop a parallel computational fluid dynamics

(CFD) unstructured grid generator using Delaunay triangulation techniques. This topic is

of interest to AFIT, NASP, Wright Labs, and the CFD community in general. Researchers

have done little work in this area, but as the number of parallel CFD flow solvers

increases, the grid generation process will become a bottleneck.

In order to accomplish this goal, I had a lot to learn about both CFD and parallel

processing. I had a great deal of help in this effort. I would especially like to thank my

advisor, LtCol Hobart, and my committee members, Capt Doty, Dr Lamont, and Dr Beran

for their help in trying to get a grasp on all the concepts involved. Without their expertise

I would have been lost. A special thanks, as well, to Capt Frank Smith for his patient

explanations and access to his sequential code.

During the development phase of my thesis I received a great deal of help from several

members of the parallel processing community. 7 would like to thank the members of the

Mathematics Sciences Section at Oak Ridgr ' -ratory, especially Barry Peyton and Dave

MacKay for their help in providing me with their parallel recursive spectral bisection code.

I would also like to thank Trey Arthur and Michael Bockelie of Computer Sciences

Corporation for their help in getting a copy of the parallel advancing-front unstructured

grid generator (VGRIDSG) they developed for NASA Langley.

Finally, I would like to thank my family and friends for their continual support

whether they were close or far away. A special thanks goes to my husband, Jon, for his

support and understanding, as well as his technical help when it came to aeronautical

engineering, math, and Fortran problems.

Deborah E. Davis

ii

Table of Contents

Page

Preface ... ii

List of Figures .. v

List of Tables ... vi

Abstract .. vii

Chapter 1: Thesis Background .. 1-1
l .0roduction .. 1-1
Background .. 1-1

AFIT Parallel CFD Research 1-2
Parallel Computing Concepts 1-2
CFD Concepts .. 1-5

Problem .. 1-9
Assumptions and Scope.......................................1-9
Approach ... 1-10
Required Equipment .. 1-12
Sum m ary ... 1-12

Chapter 2: Literature Review .. 2-1
Introduction .. 2-1
Viability of Parallel Computers for CFD 2-1
Parallelizing Grid Generation 2-6

Delaunay Triangulation 2-7
Parallel Grid Generators 2-8
Point Insertion .. 2-9
Domain Decomposition 2-11

Environmental Issues ... 2-13
Sum m ary ... 2-15

Chapter 3: Methodelogy ... 3-1
Introduction .. 3-1
Grid Generation ... 3-1

Surface Generation .. 3-1
Initial Grid Generation 3-3
Point Insertion .. 3-3
Boundary Definition .. 3-3
Clustering ... 3-4
Smoothing ... 3-5

Domain Distribution ... 3-6
Software Design .. 3-10

Version Descriptions 3-12
Input .. 3-15
Output ... 3-16

mi

Code Development .. 3-16
Version 1 ... 3-17
Version 2 ... 3-18
RSB ... 3-23

Sum m ary ... 3-23

Chapter 4: Testing and Results .. 4-1
Introduction .. 4-1
Parameter Modification ... 4-1
Accuracy .. 4-7
Tim ing .. 4-8

Version 1 .. 4 9
Version 2 4-10

Scalability / Load Balancing 4-10
Version 1 ... 4-11
Version 2 ... 4-12

Chapter 5: Conclusions and Recommendations 5-1
Introduction .. 5-1
Conclusions .. 5-1
Recommendations ... 5-2

Code Improvements .. 5-2
Future Research ... 5-4

Sum m ary .. 5-5

Appendix A. Sample Program Sessions A-1

Bibliography .. BIB-

Vita ... V -1

iv

List ofFirg

Figure Page

1-1. Point Insertion in Delaunay Triangulation 1-7

1-2. Circles for Aspect Ratio .. 1-7

3-1. Methodology Decision Tree ... 3-2

3-2. Unstructured Grid Object Model 3-11

3-3. Grid Generator Software Structure 3-13

3-4. Grid Generator Software Structure Continued 3-14

3-5. Spectral Partitioning Software Structure 3-15

3-6. Initial Grid without Clustering or Smoothing 3-19

3-7. Initial Grid with Extra Points 3-20

3-8. Possible Forms of Deadlock ... 3-21

4-1. Grid with no Clustering and no Smoothing 4-3

4-2. Grid with 2 Clustering Iterations and no Smoothing 4-4

4-3. Grid with Clustering and no Smoothing 4-5

4-4. Grid with Clustering and 50 Smoothing Iterations 4-6

V

List of Table

Table Page

4-1. Maximum Error - Accuracy Results 4-8

4-2. Timing Results for Version 1 1.0/0.9 Ellipse 4-9

4-3. Timing Results for Version 2 1.0/0.9 Ellipse 4-11

vi

AFIT/GCS/ENG/93D-05

Abstract

This research addressed the development of a parallel computational fluid dynamics

unstructured grid generator using Delaunay triangulation. The generator is applied to

simple elliptical and cylindrical two-dimensional bodies. The methodologies used in the

development of the generator includtJ Watson's point insertion algorithm, Holmes and

Snyder's point creation algorithm, a discretized surface definition, Anderson's clustering

function, and a Laplacian smoother. The first version of the software involved a processor

boundary exchange at the end of each iteration with no inter-processor communications

during the iterations. The second version used inter-processor communication during each

iteration instead of the boundary exchange. Version 1 proved to be unscalable due to the

interdependency of the triangular elements. The code did scale to two processors, in some

cases, and for these cases portions of the code demonstrated a speedup of 1.8. Version 2

could be used on multiple processors, but did not provide continued speedup past two

processors due to the communication overhead. Two distribution methodologies, a simple

360-degree distribution and recursive spectral bisection (RSB), were examined. For the

initial grid distribution, the distribution generated by the RSB code would be similar to the

distribution generated by the 360-degree methodology and would require significantly more

time to execute. The advantages associated with the RSB distribution methodology were

not apparent for the initial distribution.

vii

A PARALLEL COMPUTATIONAL FLUID DYNAMICS
UNSTRUCTURED GRID GENERATOR

Chapter 1: Thesis Backafound

Introduction

Computational Fluid Dynamics (CFD) is a numerical representation of a fluid flow

around or through a solid body. This body can be an aircraft, car, missile, or any other

vehicle where the interaction with the surrounding flowfield is an important consideration.

The design of such vehicles is often based on CFD methods. The accuracy of the results of

such calculations is limited by the capabilities of the computer on which the calculations

are performed. Extended periods of time can be required to complete numerically

intensive CFD computations. One way to improve CFD computational performance, and

thus increase the accuracy possible, is to use parallel computers. One part of the parallel

CFD process that has not been studied extensively is grid generation. That part of the

CFD process is the focus of this thesis. This chapter first presents a background of the

problem including why the topic is important and the concepts that are important for a

discussion of CFD and parallel computing. Following the background information, this

chapter provides the assumptions that apply to the thesis research and how these

assumptions limit the scope of the topic. Then, the chapter presents the approach required

to solve the thesis problem.

Back•round

Previously, technological advances provided sequential computers that decreased the

time required to perform CFD computations. Current sequential computers are reaching

1-1

maximum speeds. One of the most promising solutions to this barrier is the use of parallel

computers. This option has led researchers to work on parallelizing CFD codes. A basic

background in CFD and parallel computing concepts is required to fully understand a

problem description dealing with the parallelization of a CFD application. Before these

concepts are presented, this section discusses the state of parallel CFD research at the Air

Force Institute of Technology (AFIT).

AFIT Parallel CFD Research. The Air Force Institute of Technology is currently

working toward transitioning much of its CFD research from vector to massively parallel

supercomputers. The effort is a five-year undertaking, of which this year is the first.

Transitioning to parallel architectures will allow AFIT to stay up to date with current

technology and provide a better platform for CFD research.

The AFIT Aeronautics and Astronautics department has studied the use of a two-

dimensional unstructured grid with a finite-volume solver for Laplace's equation on

elliptical objects (Smith, 1992). This research applied to low-speed flow and reconfigurable

objects. The department researchers used the Delaunay triangulation method to create the

unstructured grid. Their algorithm, hosted on a sequential architecture, combined

Watson's and Bowyer's algorithms. The algorithm was an incremental insertion algorithm

that sequentially inserted points into the current Delaunay triangulation.

The National AeroSpace Plane (NASP) Joint Program Office is also interested in the

development of CFD algorithms for parallel architectures. They are supporting AFIT's

effort to transition CFD research. AFIT plans to direct the parallel CFD research toward

applications that are of potential use to NASP.

Parallel Computing Concepts. The concepts involved in parallel computing include

basic computer concepts, the parallel environment, parallel algorithms, and parallel

metrics. Basic computer concepts are not discussed here. Only the unique aspects of the

field of parallel computing are presented.

1-2

A parallel environment includes the programming language, support software, and

architecture. Generally, the languages and support software that are currently available

are dependent on the hardware platform. A variety of massively parallel computer

architectures are available. One classification system is Flynn's taxonomy (Wilson,

1993:57). From Flynn's taxonomy, the two most common parallel architecture

classifications are Multiple Instruction Multiple Data (MIMD) and Single Instruction

Multiple Data (SIMD). MIMD architectures provide complete separation of the processors.

Each processor controls its own memory and runs asynchronously. Communication

between processors is accomplished via message-passing constructs. In a SIMD

architecture, the processors share memory. The shared memory eliminates the need for

message passing constructs. The processors in a SIMD architecture run synchronously.

The same instruction is performed on each processor for different data values

simultaneously. Both MIMD and SIMI) categories include several more specific

architectures. MIMD architectures include hypercubes, meshes, and clusters. SIMD

architectures include vector/array processors, and the early Thinking Machines. The new

CM-5, by Thinking Machines, is an example of the combination of aspects of both

architectures. Ongoing research is focusing on this type of architecture combination using

the advantages of both architecture classes.

A parallel algorithm is often effective and efficient only on a specific target architecture

which must be carefully considered during the algorithm development. Researchers use

two primary metrics to measure the performance of parallel algorithms. The first metric is

speedup. Speedup indicates how much faster an application runs on p parallel processors

than on one processor. The primary equation for speedup is

sp ý T / TP

where

S, = speedup for p processors

1-3

T, = time the application takes on one processor

TP = time the application takes on p processors

(Lewis and EI-Rewini, 1992: 31). Amdahl expands on this primary equation to limit the

speedup possible based on the portion of the code that is sequential. For Amdahl's law,

is the portion of the code that must be computed sequentially. The time required for the

sequential portion of the code is PT1 and the time required for the parallel portion is (1-

P)TI/p. Amdahl's law expands the primary equation for speed up to

- +(p)
P

[Pp + (1 - 13)

(Lewis and EI-Rewini, 1992: 31-32). Gustafson and Barsis' alternative to Amdahl's law is

more optimistic. They assumed that T, = P + (1-P)p and Tp = 0 + (1-0) = 1. These

assumptions resulted in the following form of the speedup equation:

sP - p (3)

This equation is known as the Gustafson-Barsis law (Lewis and EI-Rewini, 1992: 32-33).

For an algorithm running on 200 processors, a speedup of 200 is linear speedup.

Linear speedup is the ideal speedup for a parallel algorithm. Often, if speedup is not

realized for an algorithm, the communication time is dominating the total time and little

time is spent on computations.

The second metric is efficiency. Efficiency indicates how efficiently the processors on a

parallel machine are used. The equation for efficiency is

EP = SP/p

where

E, = efficiency of p processors

S, = speedup for p processors

1-4

p = number of prwessors

(DeCegama, 1989: 7). An efficiency of 1.0, or 100%, indicates that every processor is being

used to the full extent of its capabilities. Usually, efficiency measures that are

significantly lower than 100% are due to communication time or the unbalanced

distribution of the problem over the processors involved.

Several other parallel computing concepts are also important in the development of

parallel algorithms. One such concept is data (or domain) versus control decomposition.

"In domain decomposition, the domain of the input data are partitioned and the partitions

are assigned to different processors. In control decomposition, program tasks are divided

and distributed among processors" (Lewis and EI-Rewini, 1992: 138). This decomposition

is balanced if the amount of work assigned to each processor is equal. The attempt to

balance the decomposition is known as 'load balancing" (Lewis and El-Rewini, 1992: 137).

If an increase in the size of the application can be countered by a corresponding increase in

the number of processors used, and the time required for the application remains constant,

the application is scalable.

The granularity of an application indicates the amount of processing that can be

completed between required message passing events. A "fine-grained" application has few

operations between message passing events. A "course-grained" application has numerous

operations to perform between message passing events. If the grain is too small,

communications can dominate the time required to complete the application. If it is too

small, several possibly parallel portions of the code may be executing sequentially, reducing

the parallelism of the application (Lewis and El-Rewini, 1992: 260).

CFD Concepts. The field of CFD is built on the basics of fluid dynamics. This topic is

too broad to cover in a thesis background section. Instead, this section focuses on the parts

of the CFD process that are important to a discussion of the parallelization of CFD

applications.

1-5

The first step in the solution of a fluid dynamics problem is the generation of a

representative grid for the body under consideration. A grid is a division of a continuous

area into portions that are later used to represent points in a flowfield for numerical

calculations. For a specific application or numerical approximation, the finer a grid (to a

limiting point), the more accurate the results can be, because the accuracy of numerical

schemes increases with decreased grid point spacing.

CFD grids are structured or unstructured. Structured grids are currently the most

widely used. Structured grids are the easiest to conceptualize due to their regular shapes.

In the simplest geometries, a structured grid consists of squares in two dimensions, or

cubes in three dimensions. Once a structured grid is generated, the computer time

required to solve for the flow around the body, using a specific set of equations and

assumptions, is usually less than it would be using an unstructured grid. Computations

using an unstructured grid require more time due to increased bookkeeping. However,

unstructured grids have gained acceptance in the field of CFD. Because they consist of

triangles in two dimensions, or tetrahedra in three dimensions, they require less time than

a structured grid to generate for a complex body. Unstructured grids also simplify the

modeling of adaptive bodies, such as a wing with an adjustable flap.

Two primary approaches used to create unstructured grids are the advancing front

method and Delaunay triangulation. The advancing front method is the most mature.

Delaunay triangulation, however, results in triangles that are less skewed. The advancing

front method creates a grid by marching away from the body's surface and creating the

grid as it progresses. The Delaunay triangulation grid is generated by repeatedly inserting

points into the current grid. Any triangle whose circumcircle includes the new point is

divided. Figure 1-1 shows the insertion of such a point. Delaunay triangulation creates

cells in which the minimum angle of each triangle is maximized. Using Watson's

algorithm, new grid points are generated within triangles whose aspect ratio is greater

1-6

POI N-11 iIn CIA QllI ININ~m fwd ofafledl GdON

Figure 1-1. Point Insertion in Delaunay Triangulation

than a specified value (Barth, 1992:6-15). The aspect ratio of a triangle is the ratio of its

circumcircle to its innercircle (see Figure 1-2). Holmes and Snyder expand on Watson's

algorithm to include the area of the triangle as a criterion for point generation (Anderson,

1992:1).

Figure 1-2. Circles for Aspect Ratio

1-7

The less skewed triangles generated by the Delaunay triangulation method lend

themselves to better solution accuracy. At first glance, however, the advancing front

method appears to be easier to parallelize because it involves creating an appropriate grid

where there is empty space. Only the border triangles must be coordinated between

processors. The border construction can even occur after the processors have completed

"filling" their assigned empty spaces. Delaunay triangulation involves modifying an

existing grid which involves more interprocessor communication because neighboring

triangles may be located on separate processors.

CFD calculations can use either two-dimensional or three-dimensional grids. Although

three-dimensional grids provide a better representation of reality, they are computationally

expensive to generate. Two-dimensional grids are often used to study cross-sections of a

body and in the development of numerical algorithms. After an algorithm is developed for

two-dimensional grids, it can be adapted for three-dimensional grids.

The field of CFD involves the use of many different mathematical representations of

flowfields. The primary sets of equations are the Navier-Stokes and Euler equations. The

Navier-Stokes equations provide a method for the examination of flowfields in a broad

range of circumstances. Solutions involving the full set of Navier-Stokes equations are

extremely expensive in terms of computer resources and time. The time and resources

required for many applications, can be limited by using subsets of these equations. The

Euler equations are one such subset. The Euler equations provide an approximation of

fluid flows where viscosity and heat transfer may be assumed negligible.

The driving force behind the selection of a set of equations is the specific CFD

application. Applications can involve internal or external flow, laminar or turbulent flow,

compressible or incompressible fluids, steady or unsteady flow, and viscous or inviscid

considerations, just to mention a few. The type of CFD algorithm that is chosen is based

on the equations and grid representation used for a specific application. The three most

common types of CFD algorithms are finite-difference, finite-volume, and finite-element.

1-8

The recent increase in the use of finite-volume solvers is due, in part, to the evoluion Of

unstructured grids.

Problem

This research develops a parallel algorithm to create a two-dimensional unstructured

grid using Delaunay triangulation for a given simple object. The goal was to achieve linear

speedup on a distributed memory MIMD parallel computer without sacrificing any

accuracy provided by the sequential Watson/]Bowyer algorithm currently used. The

methodology used focuses on a data parallel approach because grid data can be logically

distributed onto processors in uniform pieces. The operations performed on the data cannot

be readily modeled with a task graph because a cell, created through Delaunay

triangulation method, can have more than four neighbors. Therefore, care must be taken

not to map the grid to the processors in a way that will cause the processing to be

dominated by communications.

AssumDtions and Scope

The field of CFD, and fluid dynamics in general, is quite broad. This research is

limited to a specific type of application and the utilization of specific methods to solve the

individual parts of the problem. Although this specialization limits the applicability of the

algorithms, it is necessary to reduce the size of the problem and correspondingly, the time

required to run the software once it is implemented. Broad algorithms can be applied to

more applications, but every application solution requires a longer time than would be

required using a more specific algorithm. For numerically intensive and exceedingly large

problems, problem specific algorithms are often the best way to attack the problem. To

cover a wide range of problems, one solution is to develop a library of specific algorithms.

The grid is limited to two dimensions around a simple elliptical or cylindrical object. The

flow is assumed to be external to the object. The clustering function used assumes the

1-9

areas of interest lie on or near the surface of the object. Other possible areas of interest

are not considered in order to simplify the problem. To generate the unstructured grid the

software uses the method of Delaunay triangulation. This section discusses the limitations

of these assumptions.

An unstructured grid is a viable tool for a finite-volume solver. This type of solver

involves the determination of values in every cell of the grid. It is useful for geometrically

complex objects. A finite-volume solver can also provide improved results over finite-

difference methods for structured grids (Beran, 1992).

The use of an unstructured grid is appropriate for a finite-volume solver. The

application indicated by Smith is most likely to be applied during situations such as an

aircraft landing (Smith, 1992). During a landing, the wing often changes shape due to the

use of flaps. An unstructured grid is much better at adjusting to a shape change than a

single structured grid. A change in shape does not require regeneration of the entire grid,

only the small portion affected by the change. For ease of development the methodology

uses a two-dimensional grid.

The Delaunay triangulation method assists in generating a grid whose elements are not

usually highly skewed. More consistent triangles create more consistent grid elements,

which are used in the numerical analysis. The shape consistency of the triangles improves

the accuracy of finite-volume solvers.

An efficiency of over 70% is accepted as reasonable by the parallel computation

community (see Chapter 2). The parallel computation metrics, efficiency and speedup,

indicate the possible scala•it., of the code.

AvDroach

The first step in the research process was to completely understand the problem and its

various parts. Part of this understanding process consisted of an extensive literature

--10

search. The remainder came about through discussions with personnel involved with both

CFD and parallel algorithms.

The main part of this research included developing, implementing, and testing

algorithms for an unstructured grid generator. Several subtasks make up this larger task.

The first subtask is the development of a parallel algorithm for Delaunay triangulation

using software engineering techniques. The methodology included consideration of load

balancing and the communication requirements of any given problem distribution. It also

ensured the resulting grid was fine enough to use with the flow solver to arrive at an

answer that displayed an acceptable amount of accuracy. The second subtask was the

implementation of the algorithm. This subtask required consideration of which language

and architecture to use for implementation of the algorithm.

The test plan consisted of several parts. First, testing involved comparing the resulting

grids with others from sequential grid generators. It then involved running the results of

the grid generator through a flow solver for problems with known solutions. A

determination of the amount of error in the algorithm is available from these tests. An

acceptable level of error is dependent on the methods reflected in the algorithms and the

applications that utilize the code. Computer architectures can affect the numerical

accuracy of the results as can the differences in the implementation of double-precision

numbers on different types of computers. The tests also examined the differences that the

addition of clustering and smoothing made to the accuracy of the results.

The metrics of speedup and efficiency can use the results of these, and similar, tests.

Two additional tests were required. The first set of tests involved executing the code on a

varying number of processors, while holding the problem size, or grid size, at a consistent

level. The second set of tests involved holding the number of processors level and

increasing the size of the problem. These additional tests provided insight into the

scalability of the algorithm for the specific problem. Other tests regarding parallel

1-11

performance included static versus dynamic domain decomposition and the utilization of

different domain decomposition technique.

Reguired Eouipment

The software developed in support of this thesis effort was hosted on the Intel iPSCM2

Hypercube. The decision to develop codes for this architecture was based on several

factors. One factor was the availability of the architecture. The software development

was also done on the iPSC/2 because of prior programming experience.

Summary

The process of parallelizing CFD applications included several steps. These steps were

the development and implementation of algorithms for the grid generator, and testing for

the accuracy of results, and the usefulness of the algorithms on parallel architectures. This

thesis investigation focuses on a specific application within the field of CFD. Focusing on a

specific application limits the scope of the problem to an achievable level. This research

provided the first parallel grid generation algorithms for AFIT CFI research.

The next chapter provides a literature review of significant research in the area of

parallel computation fluid dynamics applications. Chapter 2 lays down a foundation for

the work performed in this thesis effort. Chapter 3 builds on the concepts introduced in

Chapter 2. It explains the methodologies involved in grid generation, domain distribution,

and software design and implementation. A discussion of both versions of the grid

generation software and the recursive spectral bisection code is also included in Chapter 3.

Chapter 4 presents the testing methodologies and the results achieved through the use of

the methodologies included in Chapter 3. The results are presented in numerical and

graphical form. Finally, Chapter 5 consists of the conclusions and recommendations

resulting from the completion of this thesis research.

1-12

Chavter 2: Literature Review

Introduction

A relatively new class of computer systems, massively parallel processors, introduces

the possibility of increased accuracy for CFD applications. This possibility exists because

fewer assumptions need to be made to complete the calculations necessary for a given

application in a limited amount of time on a parallel architecture. There is a significant

research effort underway that focuses on the parallelization of CFD applications. The

purpose of this chapter is to examine literature dealing with the parallelization of CFD,

with an emphasis on grid generation. Much of the information in this chapter also

provides a background for the methodologies described in Chapter 3.

Viability of Parallel Computers for CFD

A wide range of authors have shown the viability of using parallel computers for

solving CFD applications. This section demonstrates the parallelism inherent in grid

generation and discusses the results of work performed by several researchers. Many

researchers compare their results to those obtained on Cray computers. The most

important aspects of their work are the demonstrated speedup, efficiency, scalability, and

possibilities for future improvement. Note that most of the reported research deals with

flow solvers rather than grid generators because little has been done on the parallelization

of grid generators because the issue of parallelizing CFD applications is relatively new.

Lohner, Cambros, and Merriam presented their successful implementation of a parallel

unstructured grid generator using the advancing front method in a recent paper (Lohner,

Cambros, and Merriam, 1992). Although they do not discuss their results in terms of

speedup and efficiency, they discuss many important issues surrounding parallel

unstructured grid generation. One important issue is the ability to parallelize the process

of grid generation. The authors note that the process of grid generation is scalar because it

2-1

involves the insertion of one point after another. However, "as the introduction of a point

or element only requires checking the local neighborhood for compatibility, one may

introduce several (possibly many) points or elements at the same time" (Lohner, Cambros,

and Merriam, 1992:33). The researchers believe "that the inherent parallelism is

independent of the size of the final mesh" (Lohner, Cambros, and Merriam, 1992:33). This

belief is logical because the initial grid is the same, regardless of the size of the final grid.

This belief indicates that the application may not scale well.

Stagg and Carey examined a parabolized Navier-Stokes code on an nCUBE/2 with 1024

processors (Stagg and Carey, 1992). They used a series of two-dimensional grids to

represent steady flow past supersonic and hypersonic vehicles. The nCUBE/2 is a MIMD

machine with a hypercube configuration. They tested their algorithm using two methods.

The first method kept the grid size constant and increased the number of processors (Stagg

and Carey, 1992:332). These results indicated that the algorithm scales well up to 16 grid

nodes per physical processor. The second test method involved increasing both the grid

size and the number of processors at the same rate. This test also showed the flow solver

algorithm to be scalable.

In an earlier paper, Agarwal compared the execution of two-dimensional Reynolds-

averaged Navier-Stokes codes hosted on a Cray X-MP to equivalent converted codes on a

16,000 processor Connection Machine, CM-2. His "timing studies show that for smaller

problems, Cray is significantly faster than CM; however, as the problem size increases, CM

is likely to achieve faster results" (Agarwal, 1989:922). This demonstrates the potential of

massively parallel processors.

In one of his papers, Braaten explored the implementation of a two-dimensional Navier-

Stokes code on an Intel iPSC/2 Hypercube (Braaten, 1989). The application he discussed

was a steady flow with both laminar and turbulent elements. Braaten executed his code on

a 32-node scalar and an 8-node vector iPSC/2. During testing involving steady laminar

flow "speedups relative to a single processor up to 20.2 with 32 processors are achieved,

2-2

dmnstrating the parallel efficiency of the algorithm" (Braaten, 1989:949). "This is

equivalent to a parallel efficiency of 63% (Braten, 1989:951). He compared these results

to those obtained on a Cray X-MP. "With 32 Processors the performance of the iPSC/2 is

about 1/6th that of a single-processor CRAY X-MP" (Braaten, 1989.951). "Results with an

8-node vector iPSC/2VX give 1/5 the performance of a single-processor CRAY X-MP, which

translates to more than a tenfold improvement in cost performance" (Braaten, 1989:951).

He concludes that as parallel architectures grow and become faster, his algorithm has the

potential to overtake the performance available on the Cray X-MP and other sequential

supercomputers. This conclusion is logical because the development of parallel

architectures is still a new field, where as the development of the Cray has required many

years.

In a recent paper, Hauser and Williams attempted to predict the efficiency of a Navier-

Stokes code running on a 520-node Intel Touchstone Delta (Hauser and Williams, 1992).

The Delta is a MIMI mesh architecture. They examined the flow about the European

space plane Hermes. They developed a communication model for the Delta and compared

it to the older iPSC/860. Although their discussion is purely theoretical, the results are

quite promising. Based on their models, they predicted that their code can run on the

Delta with an efficiency of over 95% (Hauser and Williams, 1992:57). They indicated

several reasons for this phenomenon. The first is that the complex algorithm requires

more computations per node. A computationally intensive algorithm is thus ideal for a

MIMD machine. Secondly, the hardware speed available on the Delta allows

communications to occur more rapidly than would otherwise be possible. Another reason is

that each processor has 16 Mbytes of local memory. This large memory space allows a

large amount of data to be stored on each node. Finally, a proper grid distribution

contributes to an efficient implementation (Hauser and Williams, 1992:57).

Steven Scherr provided a discussion of experimental results of an explicit MacCormick

predictor-corrector Navier-Stokes algorithm on an Intel Touchstone Delta (Scherr, 1993).

2-3

He used a three-dimensional structured grid to examine laminar flow about a delta wing.

He balanced the workload across up to 507 nodes of the Delta machine. Scherr reported

parallel efficiencies of 60-68% (Scherr, 1993:8-9). Note that this is not the same application

or algorithm used earlier by Hauser and Williams, so the efficiencies cannot be directly

compared.

During a 1989 conference, a group of researchers shared the results of their

experiments regarding the use of an Euler code on a 16-node Intel iPSC/2 and a 512-node

nCLTBE/ten (Barszcz, Chan, Jesperson, and Tuminaro, 1989). Both systems are configured

in a hypercube topology. The flow field, represented by a two-dimensional structured grid,

was steady and inviscid. They included detailed results of numerous tests completed on

both parallel architectures and one processor of a Cray X-MP. 'The Intel iPSC/2 yields a

speedup of 15.0 running from 1 to 16 processors, and the nCUBE yields a speedup of 10.1

running from 32 to 512 processors on the 256 x 128 grid" (Barszcz, Chan, Jesperson, and

Tuminaro, 1989:937). The results presented by these authors demonstrate the possibilities

available when using different parallel computers. A direct comparison based on 1 to 16

processors on the iPSC/2 to the nCUTBE with 32 to 512 processors with the same size grid

is not reliable. A more accurate comparison would compare the same number of processors

on each system or correspondingly increase the size of the grid. Currently, neither of these

computer configurations can compete with the Cray X-MP, on this specific application, due

to their lack of maturity. As discussed earlier, however, Braaten reported the success of

an 8-node iPSC/2VX configuration when compared to a Cray X-MP (Braaten, 1989). Both

the computer configuration and the specific application affect the success of an experiment.

Another group of researchers explored the use of an Euler solver on an Intel Touchstone

Delta (Mavriplis, Das, Saltz, and Vermeland, 1992). They used a three-dimensional

unstructured grid. The original code was developed for a Cray Y-MP shared-memory

system. This code included several grid strategies including single and multigrid

arrangements. All the preprocessing, such as the grid generation, was completed on the

2-4

Cray. The Cray Y-MP outperformed the Delta by a factor of two for several reasms. The

first is the shared memory of the Cray, which limits the required message passing. The

Delta must rely on message passing for inter-processor communication. For this algorithm,

the Delta achieved a communication to computation ratio of 50% which demonstrates fair

efficiency for a MIMD architecture (Mavriplis, Das, Saltz, and Vermeland, 1992:137). The

second reason for the lack of performance of the Delta is the lack of effective tools for

distributed memory systems. As these tools become more mature, the Delta should make

progress in the area of performance.

Braaten examined the use of a 32-node Intel iPSCIV (vector processor) running both

Euler and Navier-Stokes solvers (Braaten, 1990). The application he discussed included

both viscous and inviscid, transonic, compressible flows. Using the vector processors of the

iPSC/2, he tested both line and point solvers. He decomposed the grid into overlapping

regions, each of which was then assigned to a physical processor. Brsaten tested the

algorithm by performing 100 iterations on both scalar and vector processors for an iPSC/2.

"With 32 processors, efficiencies of 80% are achieved with scalar processors, 71% with the

line solver on vector processors, and 45% for the point solver on vector processors"

(Braaten, 1990:466). These systems obtained approximately N14th the performance of a

single processor Cray Y-MP (Braaten, 1990:467).

Researchers Long, Khan, and Sharp also examined both Euler and Navier-Stokes

solvers (Long, Khan, and Sharp, 1991). Their code was based on the Three-Dimensional

Euler/Navier-Stokes Aerodynamic Method (TEAM) used by Lockheed and the USAF (Long,

Khan, and Sharp, 1991:660). They used both structured and unstructured three-

dimensional grids on a Connection Machine (CM-2). They discussed the merits of each

type of grid and the current bottleneck their generation creates. After testing the various

configurations on the CM-2 and a Cray X-MP the authors arrived at three conclusions:

1) An unstructured grid code on the CM-2 is roughly as efficient as the TEAM code
is on a Cray X-MP.

2-5

2) A structured grid code on the CM-2 is roughly 15 times faster than TEAM on a
Cray X-MP.

3) An unstructured grid code on the CM-2 is roughly 100 times faster than an
unstructured Euler code on a Cray X-MP when no gather scatter is used. (Long,
Khan, and Sharp, 1991:665)

Their results demonstrate the high performance possible on a CM-2 by comparing the

results to those achieved on a single-processor Cray X-MP. These results are limited to the

capabilities of a SIMD machine as compared to a earlier single-processor Cray. Most

parallel machines are now MIMI machines and most Cray computers have multiple

processors. Although the results are limited, they do demonstrate the capabilities of

massively parallel machines as applied to several different CFD solvers.

The experiences of all these researchers provide an optimistic look at the future of

parallel CFD. They show that any architecture, when effectively utilized, can demonstrate

promise for the future. The reported efficiencies range from 50% to 95%, but the 95%

efficiency reported by Hauser and Williams was purely theoretical. Most researchers

reported efficiencies around 60-70%. This thesis research attempts to match these

efficiencies. The work of the researchers also demonstrates the variety of CFI applications

that can make use of the computational power of parallel architectures. Further advances

in this field will require more powerful parallel machines and the development of true

parallel algorithms as compared to the parallelization of sequential algorithms.

Parallelizinz Grid Generation

CFD grid generation is a topic of great interest to parallel and sequential computer

users in the CFD field. While the development of structured grids is a relatively mature

field, the development of unstructured grids is still relatively new. The development of

parallel code to implement either one is even newer. Currently, most grid generation

algorithms are implemented on sequential machines. This occurrence will eventually

create severe bottlenecks in the CFD process (Long, Khan, and Sharp, 1991). This

2-6

statement is especially true of adaptive grids which must be regenerated when the surface

changes. This section presents reasoning for choosing to use Delaunay triangulation,

current research in the area of parallel grid generation, methods for inserting new points

in a grid, and methods for the decomposition of the grid generation process. The research

presented in this section provides a basis for the selection of methodologies used for this

work.

Delaunav Triangulation. The two primary methods used to generate unstructured

grids for CFD are advancing front and Delaunay triangulation. This section examines both

methods and the advantages of using Delaunay triangulation as discussed by various

authors.

In a paper for AGARD, Barth lists the properties of a two-dimensional Delaunay

triangulation (Barth, 1992). The seven properties he discusses are:

1) Uniqueness - No four points are cocircular.

2) Circumcircle Criteria - The circumcircle of every triangle is point free.

3) Edge Circle Property - There exists some circle passing through the endpoints of
each and every edge which is point-free.

4) Equiangularity Property - The minimum angle of the triangulation is maximized.

5) Minimum Containment Circle - The maximum containment circle over the entire
triangulation is minimized.

6) Nearest Neighbor Property - An edge formed by joining a vertex to its nearest
neighbor is an edge of the Delaunay triangulation.

7) Minimal Roughness - A Delaunay triangulation is a minimal roughness

triangulation for arbitrary sets of scattered data. (Barth, 1992:6-12 to 6-14)

These properties make a Delaunay triangulation ideal for CFD flow field calculations

because they increase the regularity of the grid.

In his book, Automatic Mesh Generation, George describes both advancing front and

Delaunay triangulation methods for the generation of numeric meshes. The algorithms he

presents are sequential, but the concepts behind the methods are the same. He states that

2-7

"nowadays, [Delaunay triangulation] seems to have the most general application" (George,

1991:32).

In a recent NASA Technical Memorandum, Anderson described his use of Delaunay

triangulation for the generation of an two-dimensional unstructured grid (Anderson, 1992).

He chose to use Delaunay triangulation because "the resulting meshes are optimal for the

given point distribution because they do not usually contain many extremely skewed cells"

(Anderson, 1992:1).

Parallel Grid Generators. The parallel unstructured grid generators developed by

Arthur and Lohner, Camberos, and Merriam both use the advancing front method (Arthur

and Bockelie, 1993) (Lohner, Cambros, and Merriam, 1992). There is not any research

currently available that deals with the Delaunay triangulation method of parallel

unstructured grid generators.

A parallel implementation of an unstructured surface grid generation program,

VGRIDSG, was recently developed for NASA by Computer Sciences Corporation (Arthur

and Bockelie, 1993). This program is hosted on a cluster of Silicon Graphics IRIS 4D

workstations. It uses the advancing front method of unstructured grid generation. In their

report they discussed the speedup achieved by the subroutine frontuv, which is the

parallelized portion of the original VGRIDSG program, and the program as a whole. The

tests were run on 1, 2, 3, 4, 6, and 12 processors. For the generation of a surface grid of a

simple cube "the complete program and subroutine frontuv approach maximum speed ups

of 8.1 and 6.2, respectively" (Arthur and Bockelie, 1993:8) For the generation of a surface

grid for a Mach 3.0 High Speed Civil Transport "the speed up of subroutine frontuv is

asymptotic to about 3.4 and the overall speed up is asymptotic to approximately 3.0"

(Arthur and Bockelie, 1993:9). Their research demonstrates the possibilities of parallel

grid generators, but it is limited to experiences on a group of five different IRIS computers

connected via an Ethernet. Any system which makes use of individual computers

2-8

connected via a network, such as Ethernet, involves higher communication costs than

processors contained within a single system unit.

Lohner, Camberos, and Merriam implemented their parallel unstructured grid

generator on an Intel Hypercube (the specific machine is not mentioned) (Lohner, Cambros,

and Merriam, 1992). Like Arthur and Bockelie, they developed an advancing-front grid

generator. They also included a clustering function and a smoother. "Three numerical

examples were presented to demonstrate the parallel grid generation and parallel

smoothing processes for subdomains of arbitrary shape and complex geometries in two

dimensions" (Lohner, Cambros, and Merriam, 1992: 44). The paper does not include timing

results of the software. Unfortunately, this does not provide any information on the

capabilities or potential of parallelizing the grid generation process.

Although there is currently a great deal of work being done on grid generators using

Delaunay triangulation, the research is not in the area of parallel computing.

Point Insertion. The method used to add new points in a Delaunay triangulation CFD

grid can affect the ability to parallelize an algorithm. The insertion of new points into a

grid consists of two steps. The first step is to determine where the new point needs to be

located. The second step is to determine how to integrate the new point into the existing

triangulation. This section examines both parts of point insertion and extensions to the

basic methods as discussed by various authors.

Barth discussed a number of point insertion methods that result in a two-dimensional

Delaunay triangulation (Barth, 1992). He defined four groups of algorithms: "Incremental

Insertion Algorithms, Divide and Conquer Algorithm, Tanemura/Merriam Algorithm, and

Global Edge Swapping (Lawson)" (Barth, 1992:6-14). The Incremental Insertion algorithms

included three separate algorithms: Bowyer's, Watson's, and Green and Sibson's (Barth,

1992:6-14). Bowyer's algorithm is based on the insertion of points into a Voroni diagram.

A Voroni diagram is the dual of a Delaunay triangulation. After a point is inserted, any

edges within the territory of the new point are deleted and reconnected to include the new

2-9

point. Watson's algorithm is similar, but is based on the insertion of points into a

Delaunay triangulation. Once a point is inserted, the edges nearest the point of all

triangles whose circumcircle includes the new point are deleted. The points making up

these edges are then connected to the new point to form new edges. Green and Sibson's

algorithm is similar to Watson's, except that the retriangulation is accomplished via edge

swapping. The Divide and Conquer Algorithm discussed by Barth assumes that the

locations of all new points are specified a priori (Barth, 1992:6-16). The resulting "cloud of

points" is then triangulated to create a Delaunay triangulation (Barth, 1992:6-16). The

TanemuralMerriam algorithm uses an advancing front concept to develop a Delaunay

triangulation (Barth, 1992:6-17). The Global Edge Swapping algorithm, developed by

Lawson, "assumes that a triangulation exists (not Delaunay) then makes it Delaunay

through application of edge swapping such that the equiangularity of the triangulation

in~creases" (Barth, 1992:6-18).

In his paper, Anderson mentioned four methods for determining the location of a new

point to be added to a grid: "a priori by generating points about individual components

with structured grids, subdividing existing quadrilateral cells using a quadtree encoding

method, embedding the geometry into a Cartesian grid," and an approach by Holmes and

Snyder (Anderson, 1992:1). He used the approach developed by Holmes and Snyder based

on the aspect ratio and cell area of the triangles making up the grid. This approach

creates a grid which is generally "too coarse to be used for obtaining accurate flow-field

solutions" (Anderson, 1992:1). To correct this situation, Anderson extended Holmes and

Snyder's algorithm to include a function to cluster cells in regions of interest (Anderson,

1992:1).

Although a grid generated using Delaunay triangulation is considered optimal, "in

certain regions of the mesh abrupt variations in element shape or size may be present"

(Lohner, Camberos, and Merriam, 1992:40). These variations can be overcome through the

2-10

use of a smoothing function. Loaner, Camberos, and Merriam implemented a parallel

Laplacian smoother for an unstructured grid in the following manner:

1) Subdivide the mesh into subdomains

2) For each timestep or smoothing pass:
- Smooth each subdomain separately;
- Exchange boundary information;

3) Assemble the result. (Lohner, Camberos, and Merriam, 1992:40)

This is efficient as long as the subdomains are the same size, otherwise the load balancing

causes some processors to become idle while waiting to exchange boundary information

with processors which have a larger computational load.

Domain Decomnosition. The decomposition of the grid domain can impact the speedup

and efficiency obtained by an algorithm. Grid decomposition of CFD grids has been

approached in several ways. This section examines the general decomposition methods

presented by several authors researching CFD algorithms and then discusses more detailed

methods for the decomposition of unstructured CFD grids.

Ramesh Agarwal experimented with the adaptation of a two-dimensional Reynolds-

averaged Navier-Stokes code for a 16,000 processor Connection Machine, CM-2 (Agarwal,

1989). Agarwal assigned each element of the grid to a unique processor when the number

of elements was less than or equal to the number of physical processors. When the number

of elements is greater then the number of processors, "each processor acts as a virtual

processor so long as the memory size is not exceeded" (Agarwal, 1989:921). This mapping

provided the best load balancing possible.

Hauser and Williams' grid partitioning provided a balanced approach by dividing the

structured grid into equO si- blocks. However, "to simulate the irregularity caused by the

geometry of the solution domain, we have made random assignments of the blocks to the

processors of the machine" (Hauser & Williams, 1992:56). Each processor completed

approximately the same amount of work. This balance limited the amount of time any

2-11

processor was idle while waiting for communications from the other processors. The

communication performance could have been reduced, however, by using a mapping of

blocks to processors that limited the distance between adjacent blocks.

More detailed domain decomposition strategies for unstructured grids are discussed by

Barth in his paper for an AGARD-sponsored course (Barth, 1992). In his paper, Barth

discussed Coordinate Bisection, Cuthill-McKee, and Spectral Partitioning algorithms for

domain decomposition and their success as used in parallel CFD calculations. For detailed

explanations of these algorithms refer to Barth's paper. This section discusses only the

results of their use. Coordinate bisection "is very efficient to create but gives sub-optimal

performance on parallel computations owing to the long message lengths that can routinely

occur" (Barth, 1992:6-9). The results of using the Cuthill-McKee algorithm "indicate a

performance on parallel computations which is slightly worse than the coordinate bisection

technique" (Barth, 1992:6-9 to 6-10). According to Barth, "the objective of the spectral

partitioning is to divide the mesh into two partitions of equal size such that the number of

edges cut by the partition boundary is approximately minimized" (Barth, 1992.-10). "We

found that parallel computations performed slightly better on the spectral partitioning than

on the coordinate bisection or Cuthill-McKee. The cost of the spectral partitioning is very

high" (Barth, 1992:6-10).

It is possible to reduce the cost of spectral partitioning by using parallel computers to

run the algorithm. Leete, Peyton, and Sincovec developed a parallel recursive spectral

bisection mapping tool on an Intel iPSC/860 (Leete, Peyton, and Sincovec, 1993). They

expanded the basic RSB method to include the ability to distribute the work evenly, even

when the amount of work required for each element is uneven, and the ability to distribute

the elements across p processors, where p is not a power of two (see Chapter 3 for further

details). Their "parallel implementation's capacity to make good use of the extra processors

is quite modest on the Intel iPSC/860" (Leete, Peyton, and Sincovec, 1993: 926). The

authors do not provide speedup information. They do acknowledge that their research is

2-12

only the first step towards an efficient implementation of a parallel ISB tool (Leste,

Peyton, and Sincovec, 1993: 927). Because ISB has demonstrated superior partitioni.,

work on parallel lSB tools will undoubtedly be continued by these researchers and others

interested in achieving an optimal partitioning.

Lohner, Camberos, and Merriam listed the following domain splitting algorithms in

their paper: "Simple Cartesian splitting, Quadtree/Octree splitting, and Background grid

splitting" (Lohner, Cambros, and Merriam, 1992:34). Of these options, they chose to

implement Background grid splitting for three reasons:

- Background grid generation is extremely cheap. Thus, a fairly fine initial

background grid can be assumed. This, in turn, allows division of the background
grid into subdomains of nearly equal size.

- The most demanding task for grid generation is the adaptive regeneration. Thus,
again a fairly fine initial grid can be assumed.

- Three major pieces of software, the grid smoother, the field solver, and the grid
generator can all use the same algorithm to generate subdomains. This reduces
software development costs. (Lohner, Cambros, and Merriam, 1992:35)

These reasons are very applicable to the unstructured grid generator developed as part of

this research.

Environmental Issues

The environment available on a specific hardware platform can greatly affect the

development, and even success, of a parallel CFD algorithm and its implementation. The

environment consists of many items, including the architecture and programming

language.

Probably the most important environmental issue involved in the parallelization of any

application is the architecture of the computer system. Which architecture is the "best" is

still not agreed on. The "best" architecture often proves to be that which best matches the

application. The earlier discussion focusing on the results of work done on parallel CFD

indicated the performance of algorithms on specific architectures.

2-13

Another environmental factor is the programming language used for an application.

Although this factor is somewhat limited by the languages implemented on the hardware,

most common languages such as Fortran, C, Ada, and Lisp are available on most hardware

platforms. Once again, the "best" language often depends om the application. When given

an option, most scientific programmers use Fortran or C. These languages are well suited

for numerical algorithms. This fact is especially true of Fortran, which was developed for

scientific programmers. There is a push in the software engineering field to use object-

oriented programming (OOP) methods. In a paper presented at the 1989 Conference on

Hypercubes, Concurrent Computers, and Applications, Angus and Thompkins compared the

use of OOP methods, using C++, to Fortran or C for the development of CFD code (Angus

and Thompkins, 1989). The application they used is based on the Euler equations.

Following a discussion of the individual implementations, they concluded that both

methods are effective. They also concluded that the use of OOP techniques "provides a

major enhancement of programmer productivity and portability between all machine

architectures" (Angus and Thompkins, 1989:929). However, the research also

demonstrated that "improvements in execution efficiency must be achieved before these

languages' methods can supplant FORTRAN and C for large scientific computations"

(Angus and Thompkins, 1989:929). Many other experts agree that much work remains to

be done in the area of OOP before it can compete with the efficiency of languages such as

Fortran and C.

The dominance of Fortran and C as the languages of choice for scientific programmers

is continually fueled by new developments in parallel versions of these languages. In a

recent paper, Olander and Schnabel examined the use of parallel languages such as DINO,

a parallel version of C, and Fortran D (Olander and Schnabel, 1992). They concluded that

parallel languages are an important addition to the toolbox of scientific parallel

programmers, but there is still work to be done to make it easier to obtain an optimal

parallel form of CFD algorithms (Olander and Schnabel, 1992"283). Many vendors

2-14

continue to develop now languages and now versions of popular languages to aid parallel

Programmers. High Performance Fortran (HP1F) is currently one of the hot topics in the

parallel computing field.

As the field of parallel computing matures, researchers are exerting a significant effort

to develop tools to aid in porting and developing parallel code. There is a great need for

mature parallel software tools. A recent article by Mavriplis, Des, Saltz, and Vermeland

discusses these needs (Mavriplis et al., 1992). After experiencing difficulties developing

CFD codes based on the Euler equations for a variety of parallel architectures, these

researchers concluded that "as massively parallel software tools become more mature, the

task of developing or porting software to such machines should diminish" (Mavriplis, 1992).

Until adequate software tools are available, the process of parallelizing CFD code will grow

slowly.

The parallel environment plays an important role in the development of effective,

efficient codes. The architecture issues are being addressed by researchers in cooperation

with the High Performance Computing and Communications Program which was developed

by the National Sciences Foundation (Committee on Physical, Mathematical, and

Engineering Sciences, 1991). Researchers are also aggressively addressing the software

issues. Many commercial companies are quickly coming to the realization that a good

architecture alone will not survive in this competitive field.

Summary

The research of the authors presented in this chapter provides background information

and reasoning for decisions made in the methodology used in this thesis effort. The results

achieved by numerous researchers demonstrate that the goal of parallelizing the CFD grid

generation process is viable. The research also provides the background for choosing

Delaunay triangulation as a method for generating unstructured CFD grids. The use of

Watson's point insertion algorithm and Holmes' and Snyder's point generation algorithm

2-15

are supported. The use of a RSB methodology for the distribution of the grid is also

justified. Finally, the research also provides a basis for choosing a language and

architecture for the implementation of the grid generator.

2-16

Chapter 3: Methodology

Introduction

This chapter explains the methodologies the software used for each portion of the

parallel unstructured grid generator. The grid generator for the unstructured CFD grid is

based on Delaunay triangulation as discussed in earlier chapters. A comprehensive

discussion of the methodologies involved include methodologies for each step in the grid

generation process as well as methodologies for domain decomposition and parallelization.

Also included in this chapter is a discussion of the parallel design and development process

used to define and create the software.

Grid Generation

Several steps comprise the grid generation process. Figure 3-1 shows the decision tree

used to select methodologies for the various parts of the grid generator. The methodologies

chosen by the author, are indicated by the continuation of the tree from that point. These

choices are based on the comprehensive literature search presented in Chapter 2. The

unstructured grid generator uses the Delaunay triangulation method of grid development

and the incremental insertion algorithm from Watson. The positions of new points are

obtained using a methodology developed by Holmes and Snyder, which bases point

generation on aspect ratio and cell area of the individual triangles already present in the

grid. A discretized surface definition is used to maintain surface data integrity. Finally,

clustering and smoothing functions are added to the basic generator. Following a

description of the surface generator, this section describes each portion of this methodology

description.

Surface Generation. The first step in defining a grid is the generation of the surface

and far-field boundaries for the object of interest. This grid generator uses simple object

shapes: ellipses and cylinders. These shapes enable the software to generate grids for

3-1

--!--e2Uze 46OMOO DdWAdb%%

Gvmn an Sm

Globigur 3-1 Mehodlog Diecison Trefae eifl

3-2

several objects without introducing the problems of complex shapes. The process of creating

the surface shapes is based on the number of desired points on the surface and a

mathematical model of the shape desired. The far-field boundary is defined as a circle

about the object with a radius defined by the user to ensure the boundary is far enough

away from the object to be considered to be in the free stream. The code used to generate

the shapes mathematically is a variation on Smith's work (Smith, 1992).

Initial Grid Generation. To use Watson's point insertion algorithm, the design must

first define a basic grid. The initial grid consists of two triangles generated by connecting

two corner points of a square. The length of the sides of the square are twice the radius of

the far-field boundary plus two. These lengths create a square grid one unit outside the

far field boundary that does not interfere with the generation of the initial surface grid.

Point Insertion. The surface and far-field boundary points are inserted sequentially.

The points are read in from files created by the surface generation portion of the code. Due

to the small initial grid, and because there are relatively few boundary points, a parallel

implementation of the insertion of these points is inappropriate. An evenly balanced load

would assign few triangles per processor and communication requirements would dominate

the overall time required for the insertion of the boundary points.

Following the insertion of the boundary points, new points are generated based on the

aspect ratio of each triangle in the grid. If the aspect ratio (see page 1-6) of a triangle is

greater than 1.5, a new point is inserted in the grid at the location of the circumcenter of

the triangle. This methodology is based on the approach developed by Holmes and Snyder

(see page 2-10) (Anderson, 1992). Holmes and Snyder's approach also includes point

insertion based on the area of an individual triangle. This addition provides a method for

reducing large triangles that may meet the aspect ratio requirements, but are exceedingly

large for determining flow field values.

Boundary Definition. The insertion of any point that would break up any cell making

up the interior of the object, or the area exterior to the far-field boundary is rejected. This

3-3

methodology is based on a discretized view of une surface definition. It provides a method

for maintaining the integrity of the surface and far-field boundary data. This methodology

is appropriate for well-defined surface and far-field boundaries. Any point insertion that

could affect the definition of a boundary could have a negative affect on the resulting

calculations for a well-specified boundary.

Clustering. Holmes and Snyder's methodology of point generation successfully

generates a grid consisting of triangles that are not highly skewed; however, the resulting

grid is too coarse to be used for accurate flow field calculations. One method for

overcoming this limitation is to implement a clustering function in addition to the point

generation methodology of Holmes and Snyder. This clustering function acts to increase

the number of cells in regions of interest such as the leading and trailing edges of an

airfoil. Clustering can be computationally expensive, so there is a trade-off between

increasing the positive effect of the grid and the time required to create that effect.

Anderson discussed a function in his NASA memorandum that clusters cells near the

surface of the object (Anderson, 1992:5). His function, *, is based on the area of the cell

and a weighting function, which is based on the cell's distance away from the object

surface:

*(A, d) = A*f (d) (3-1)

where

d = distance from the cell center to the nearest point on the surface

A = cell area

This variable is used to divide cells who have a value of V(A,d) greater than the average

plus the standard deviation of the initial distribution. The function is evaluated for each

cell to provide a point insertion criterion.

3-4

Anderson uses the following weighting function:

f (d) = 1 (3-2)1 +e 0(d- do)

where

do = distance from the surface where clustering will begin to occur

S= indication of how fast clustering will occur

According to Anderson, "three or four repetitions in which P is gradually increased leads to

grids with good clustering near the surface" (Anderson, 1992:6). The points generated

through the clustering function are inserted into the grid using Watson's methodology as

described above.

Smoothing. One final step is required to produce a ;rid that improves the accuracy of

solutions computed with the standard, finite-volume algorithms. This step is the inclusion

of a smoothing function. A smoothing function eliminates abrupt variations in size and

shape that may be present in neighboring cells. The most commonly used smoother is a

Laplacian smoother. The software design implements this smoother because it is prevalent

in current literature. This function repositions points according to the following equations

(Anderson, 1992:6):

n
fl, -x+ (xn-xl)

n Yi :, (YkY)

where

x,, y, = x and y coordinates for point i

wo = relaxation factor

n = number of iterations

3-5

Domain Distribution

The grid generation software developed for this thesis is hosted on a MIMD

architecture. The Intel iPSC/2 has a hypercube topology. A MIMD architecture is utilized

because of the coarse grain of the problem domain. The insertion of each point requires a

unique, large set of calculations. Although the specific calculations, such as the calculation

of the aspect ratio of a triangle, are the same, the number of times a given equation must

be calculated varies from point to point. If this algorithm were to be efficiently

implemented on a SIMD machine, the calculations for each point insertion would have to

be the same. However, this constraint wastes valuable time in the calculation of variables

of neighbors for a triangle that has few affected neighbors. Another reason to use a MIMD

architecture is because of the limited number of inter-processor communications required.

This reason is especially valid for the basic methodology of domain decomposition discussed

next.

The grid generation software uses two separate domain decomposition methodologies

for distributing the grid cells across the processors of the parallel system. The first is a

simple methodology using the far-field boundary, which is a circle, as a basis. The 360-

degree circle is divided into p sections, where p is the number of processors being used.

Any cell that consists of two or more points located in a given section is assigned to that

section. If one of the points lies directly on a boundary, the third point is considered. If

one point lies on a boundary and the remaining points are in different sections, then the

software determines the circumcenter of the triangle and assigns the triangle to a section

based on the location of the circumcenter. Another possible method for determining a cell's

section is to rely solely on the location of the circumcenter of the cell and assign the cell to

the section to which the circumcenter is located. This method would require additional

calculations that are not required by the first method. This requirement is not as

important when using static distribution, where the calculations are done only once. It

3-6

could be a major factor, however, if dynamic load balancing is used and the calculations are

done repeatedly.

Using this simple decomposition method allows the location of the section boundaries to

vary. Therefore, new points can be added in a section within cells that do not affect cells

assigned to other processors. When that process is complete, the section boundaries can be

moved to group cells that were near section boundaries. This allows the boundary cells to

be divided based on the point generation criteria, thereby eliminating much of the inter-

processor communication that would otherwise be required during point insertion. It does,

however, increase the number of communications required between iterations, because half

of a processor's cells are sent to its neighbor after an iteration is complete. This

methodology is not completely scalable, because as the number of sections, or processors,

increase, the probability that a cell lies on a boundary increases. Eventually, the sections

are so small that a cell can be continuously located on a boundary even after the shuffle is

complete. In this case, the cell never has a chance to be modified. Another communication

structure which provides for interprocessor communication during point insertion allows

this decomposition to scale better. It is still not completely scalable, however, since the

load for processors whose sections include the leading and trailing edges of an elliptical

object would be greater than the others.

Currently, there is little need to parallelize the initial grid distribution portion of the

grid generation software using this distribution method. The full calculations are done

only once at the beginning of the program, at which time there are relatively few cells. If

the calculations were required for a large number of cells, parallelization would be required

to achieve the highest speeds. The intermediate shuffle of domain information is completed

in parallel because each processor has control of its own cells and has the ability to

determine which cells to keep and which to pass to its neighbor.

The second domain decomposition methodology employed by the grid generator is

spectral partitioning, also called recursive spectral bisection. This methodology provides a

3-7

balanced distribution of cells by recursively dividing the number of cells in half. It also

generates a distribution that requires a minimum number of messages to be passed

between processors by minimizing the number of cells cut. The spectral partitioning

methodology is implemented in the grid generation software as an addition to replace the

basic methodology described above. The sequential algorithm for spectral partitioning, as

presented by Barth, consists of the following steps:

1) Calculate the matrix L associated with the Laplacian of the graph.

2) Calculate the eigenvalues and eigenvectors of L.

3) Order the i envalues by magnitude, X ! k < 4... X.

4) Determine the smallest nonzero eigenvalue, X, and its associated eigenvector xf
(the Fiedler vector).

5) Sort elements of the Fiedler vector.

6) Choose a divisor at the median of the sorted list and 2-color vertices of the graph
which correspond to elements of the Fielder vector less than or greater than the
median value. (Barth, 1992:6-10)

The Laplacian matrix is defined as L = D -A, where D is the diagonal matrix with entries

equal to the degree of each vertex, D, = d(v.), and A is the adjacency matrix of the mesh.

The Laplacian matrix is also defined as follows (Hendrickson and Leland, 1993: 954-955):

-1if (Vi, V1) eE (4
Li'j =di if ij (3-4)

0 otherwise

where

Lij = value at row i, column j

V = vertex

E = set of edges

d, = diagonal matrix element

3-8

This sequence of steps is repeated n/2 times, where n is the number of partitions desired.

This algorithm is applicable only when the number of nodes is a power of two. Several

researchers from Oak Ridge National Laboratory developed parallel code which is also

applicable for situations where the number of nodes is not a power of two. The variation is

accomplished as follows:

1. If I PI is even, then partition P into P, and P2 , where I P1l = I PI ; if I A is
odd, then partition P into P, and P2, where I Pj1 and I P2 differ by one.

2. Determine the Fiedler "cut" point for which

I I W_ I Wk (3-5)

is as small as possible for the resulting partition V, u V2 = V; then partition V into

V, and V2. (Leete, Peyton, and Sincovec, 1993)

The original definition of recursive spectral bisection (RSB) also limits the mapping by

assuming that every vertex is weighted equally. This is not the case when vertices require

different amounts of processing. The Oak Ridge researchers also addressed this problem.

They assign a weight, w%, to each vertex and choose the middle element of the Fiedler

vector "with respect to the weights, so that

is as small as possible" (Leete, Peyton, and Sincovec, 1993: 925).

The spectral partitioning methodology can be used for either static or dynamic domain

decomposition. A static implementation provides a satisfactory initial grid decomposition.

If the grid develops in a manner that maintains an even load balance, a static

decomposition is ideal, because it limits the number of interruptions to the generation

process. This balanced development is not likely for a spectrally partitioned grid, however.

The partitions are likely to group far-field and surface cells separately. The partitions

consisting of cells located near the surface gain additional cells more rapidly than the

3-9

partitions consisting of far-field cells. This disparity occurs due to the introduction of a

clustering function as described previously. Such a disparity eliminates a proper load

balance and result in the inefficient use of some processors. This disparity can be overcome

through the use of dynamic domain decomposition. Dynamic decomposition requires the

spectral partitioning methodology to be repeated during the grid generation process. The

repetition can occur as frequently as after every iteration of the point insertion algorithm.

This frequent repetition can result in high communications overhead and long periods of

grid generation interruption. An optimal solution lies between this extreme and a static

distribution. Due to the time required by RSB, several iterations should occur before the

domain is redecomposed.

Software Design

The initial software design included the basic functioning required for grid generation.

The first step in the design process was to develop an object model of an unstructured grid

for CFD applications. The basic unstructured grid is composed of points, and triangles

made up of these points. These relationships are depicted in the object model in Figure 3-

2. This initial model aids in the definition of the functionality of the resulting software.

The model provides a basis for determining the data structures and functions required for

the software.

The decision to use Fortran as the programming language for the software was based

primarily on the numerical capabilities of Fortran. Most sequential software in the area of

CFD is also written in Fortran. The use of Fortran as a programming language limits the

object-oriented programming possibilities. The software is therefore designed functionally.

The design is a top-down design that breaks down each portion of the functional

characteristics of the system. This functional decomposition is transform-centered (Gane

and Sarson, 1979: 187-189). All the subroutines report modified information on the

3-10

IMAM -

A.S.A

.LOMV

Wiom~ber D mt
bdm NIdkof]Lewmd

Chosckde
Arm

Figure 3-2. Unstructured Grid Object Model

triangles and points to the main program which then uses the information to drive the next

subroutine.

The software design includes elements that are considered only because the software

implementation is parallelized. The first consideration is the problem decomposition. The

problem is decomposed along data boundaries. Each element of the grid, in this case each

triangle, is an important data item. Operations are performed on each triangle

individually. Control decomposition methods are not appropriate in this case because the

same, limited number of operations are performed on each triangle. This functionality

lends itself to data decomposition much better than control decomposition. To ensure

proper load balancing, the distribution methodology was carefully considered. As described

previously in this chapter, a simple 360 degree methodology was used to achieve an

adequate load balance.

3-11

The relationships between the host and nodes comprising the iPSC/2 system were

examined to determine the functionality assigned to each. Although the nodes performed

the operations on the specific triangles during the parallel generation and clustering

portions of the algorithm, there was a need to determine the number to be assigned to a

new triangle or point. This function was assigned to the host. The function of determining

and solving deadlock situations was also assigned to the host. This assignment allowed

each node to report possible deadlock situations to a central point, the host. Finally, the

host was assigned the responsibility of determining when all nodes were done modifying

their assigned triangles. Once again, this assignment gave the nodes a central point of

control. During the smoothing portion of the algorithm the nodes calculate the values of

variables for the points assigned to it. The host gathers the results from the nodes and

determines the values of global variables such as averages and standard deviations.

The functional design of the software is shown in Figure 3-3. An asterisk in the upper

left hand portion of a box indicates that the module is broken out further in another

portion of the diagram. The system subroutines used by the software are not included in

the design diagrams. For information regarding the system routines for the Intel iPSC/2

refer to the iPSCI2 Fortran Programmer's Manual (Intel, 1988).

Version Descriptions. The implementation of the CFD unstructured grid generator

included two different versions. In Version 1, the basic 360-degree grid distribution

method was implemented without interprocessor communication during point insertion.

The software design of the first version is depicted in Figure 3-3, with expanded versions

of the InitGrid and Smoother designs shown in Figure 3-4. Version 2 used the same

distribution method, but included interprocessor communication during point insertion.

Finally, a RSB grid mapping tool for domain decomposition from Oak Ridge National

Laboratory is included in the discussion (Leete, Peyton, and Sincovec, 1993). The design

of the RSB code is shown in Figure 3-5.

3-12

! n'-]1

114 11 1
,

..0I' ' , sS..

3-13

r]

lif

I-1

3-144

Gild

Figure 3-5. Spectral Partitioning Software Structure

Invut. The input required by the software consists of two ASCII files. The first file

consists of point coordinates for the surface of the object. The second file consists of the

radius and point coordinates for the far-field boundary. These files are created through the

Newlnit portion of the software (see Figure 3-3). When the software is started, it prompts

the user for the names of the files. It then asks if these are new files to be created. If the

files are new, the software continues to prompt for the far-field radius and the number of

far-field points, and the surface description. For sample program sessions, see Appendix

A. The surface can be an ellipse or a cylinder. When an ellipse is generated, the number

of points on the surface is twice the input number minus two, one on the leading edge and

one on the trailing edge.

The input files have specific formats. The first line of the surface input file consists of

the number of points in the file represented as an integer. The remaining lines consist of

the x and y coordinates of o the p aking updthe surface file. The coordinates are

3-15

represented as double precision floating point numbers. The far-field input file is similar,

with the exception of the first line, which consists of the far-field radius, represented to

double precision. The remaining lines follow as described for the surface file.

Output. The output generated by the software is an ASCII input file for Tecplot

software. The Tecplot software is hosted on a Sun workstation which is used by CFD

researchers at AFIT (Tecplot, 1992). The file contains a list of point coordinates followed

by a list of triangles consisting of the three points which make up the triangle. From this

information Tecplot creates a visual representation of the grid. To use a Tecplot input file,

a user must run the ASCII file through the preprocessor, preplot, before using the main

program, Tecplot, to display the grid. The grid can be displayed on the workstation screen

or sent to a printer or file. GridGen prompts the user for an output file name and a title

string to be included in the Tecplot file.

The Tecplot file has a specific format that must be followed. The first three lines are as

follows, where the information in italics is application specific:

TITLE = "grid title"

VARIABLES = X, Y

ZONE I = number of points J = number of triangles F = FEPOINT

The next portion of the file contains the x and y coordinates of each point in the grid.

Finally, all the triangles are listed, one per line, as a list of four integers. The first three

are the points making up the triangle and the fourth is a repeat of the last point. This

fourth "point" is required because Tecplot deals with quadrilateral rather than triangular

shapes.

Code Development. The code is written for compilation by a Green Hills Fortran-386

compiler hosted on an Intel iPSC/2 with 80386 processors (Fortran Compiler, 1987). This

compiler implements the ANSI Fortran-77 standard. Both versions of the grid generator

consist of thirty-three subroutines contained in separate files. Two of the subroutines are

3-16

different between versions. This count includes one main host program, GridGen, and two

node programs, NodeGen and NodeSmth.

Only portions of the code are parallelized. The boundary definition, initial grid

creation, and 360-degree distribution software modules are not parallelized. The boundary

definition and initial grid creation modules would be difficult to parallelize because the

points making up the surface and far field boundaries are contained in two files. Writing

and reading these files in parallel would present significant bottlenecks. The 360-degree

distribution software is not parallelized because it is run only once when there are few grid

triangles. Communication would dominate any attempt to parallelize this portion of the

code. Portions of the RSB code are parallelized and are discussed later under the sub-

section titled RSB. The point creation and addition portion of the software is parallelized.

This portion includes the clustering and smoothing routines. These portions of the

software are computationally intensive and are thus, good candidates for parallelization.

Version 1. This version of GridGen includes two subroutines, Exchange and ExtraPts,

which are not present in the other version. Because this version does not implement

interprocessor communication during point insertion, the portion of the grid distributed to

each processor is modified after each iteration by moving the boundaries half the total size

of the section assigned to a processor. This provides a method for grouping the triangles

differently to ensure a processor will eventually have all the triangles necessary to

complete the addition of a point. The Exchange subroutine performs this function.

The ExtraPts subroutine inserts additional points into the initial grid to allow for

parallel point insertion. This subroutine was developed to increase the scalability of the

software without introducing interprocessor communications during point addition. The

routine inserts points along the section boundaries that define the grid partitions. The

routine can insert up to ten additional points along each boundary. Beginning with the

far-field boundary points, the new points are spaced such that a point is 3/4 of the distance

between the surface and the previous poinL This distribution pattern mimics the pattern

3-17

of a grid generated without additional points. New points are inserted on each boundary

only until the generation of the grid is scalable. A sample initial grid without extra points

is shown in Figure 3-6. In this example, only three points were required on each boundary

before the grid generation would scale to two processors. Correspondingly, an initial grid

with extra boundary points is included in Figure 3-7. The results of the extra point

additions are presented in Chapter 4.

Version 2. This version includes facilities for interprocessor communication during

point insertion. These facilities eliminate the need for modification of the initial

distribution after each iteration. This change required changes to the generation and

clustering processes. There are two modules not present in Version 1 of the software:

UpdtTri and Chk.Aff. UpdtTri updates the triangle information changed by the

insertion of a point on another node. Chk_Aff checks to see if a given triangle is affected

by the addition of a new point on another processor. After a node completes the

examination of one triangle, including the possible insertion of a new point, it determines if

another processor is requesting information on a triangle in its domain. If information is

requested, the node provides the information and waits for any changes in its domain

before continuing to its next triangle. Although the wait for changes increases the

processing time, not waiting could result in the simultaneous modification of a triangle by

multiple nodes. An array indicating the processor to which every triangle is assigned is

included on every processor. The decision to distribute the array rather than maintain it

only on the host was made to help eliminate the message passing overhead that would

have been involved with the other option.

Another possible problem is deadlock. If two or more processors are waiting for

information from each other, they would wait forever without outside interruption. There

are four main forms of deadlock, with variations on each. The four main forms are shown

graphically in Figure 3-8. Although deadlock can occur between any number of nodes, the

examples use four nodes. Form A in Figure 3-8 represents "simple" deadlock. The host

3-18

50

40

30

20

10

0 10 20 30 40 50 60

Figure 3-6. Initial Grid without Clustering or Smoothing

3-19

50

40

30

20

10

0 10 20 30 40 50 60

Figure 3-7. Initial Grid with Extra Points

3-20

- '.. • . . • =• • , = = • - -v !- -• . = . , , -• , '•r:• • =•* * ° •• .

A. B.

C,. D,

S• ~a -y1role with b

Figure 3-8. Possible Forms of Deadlock

3-21

program determines if simple deadlock exists by tracking the processors notifying it of

possible deadlock. If deadlock exists, the host program causes one node to interrupt its

normal processing and provide information to a requesting node. The host interrupts the

processor with the lowest node number. Since this situation is not likely to occur often, a

completely "fair" interruption algorithm is not required. This interruption results in

restarting the examination of the current triangle following the servicing of the waiting

node(s).

Form B represents a similar situation, except that node b is synchronized with node c

and will not terminate until node c terminates. In this case, the message request from

node a must be cancelled to allow it to answer the request from node c. To accomplish this,

node c requests information from the host on the deadlock status of node a. If node a is

waiting for a node synchronized with node c, then node c requests that the host terminate

node a's request. This has the same result as described for form a above.

Form C in Figure 3-8 shows a variation on form A. In this case, either node a or r;. Je b

will lose their message request. If node a's request is cancelled, no further cancellation is

required. If node b's request is cancelled, however, node b must also release node c which

is synchronized with it. As described for form A, the node with the lowest node number

will be interrupted and move on to service the other node's request.

Form D shows a situation in which two nodes are waiting for responses from two other

nodes which are synchronized with the opposite active node. In this case, either node a or

node b must terminate it's point addition and release the node synchronized with it. The

software deals with this form of deadlock through a timer. When a node finds itself in this

situation it waits a predefined amount of time and then "dies", releasing all the nodes

synchronized with it. This releases the synchronized node and enables it to answer

requests from the other requesting node. Since both nodes activate timers, the first to

start the timer will be the one to "die".

3-22

RSB. The code examined for the RSB distribution method (see chapter 3 for a complete

description of recursive spectral bisection) is a modified version of code obtained from

researchers at Oak Ridge National Laboratory (Leete, Peyton, and Sincovec, 1993). The

researchers indicated that the code is not exceedingly fast and is only the first step in the

creation of an efficient RSB mapping tool (Peyton, 1993). The researchers are currently

working on a multi-level RSB mapping tool which may be more efficient. The original code

mapped grids based on distributing the points of the grid. The modified code distributes

the grid based on the triangles of the grid. The RSB "implementation is based on a

straightforward parallel implementation of the Lanczos method, with only the dot and

matrix-vector products performed in parallel" (Leete, Peyton, and Sincovec, 1993: 924).

The input required for the Oak Ridge code is a file in Harwell-Boeing format for sparse

symmetric matrices. The Harwell-Boeing format consists of a four line header and up to

four records consisting of column start pointers, row indices, numerical values, and the

right-hand-side matrix (for a complete description of Harwell-Boeing format see the

Harwell-Boeing description document) (Duff, Grimes, and Lewis, 1988). The RSB code

only uses the row and column information to generate a connectivity graph associated with

the matrix. The RSB distribution method was not incorporated into a version of GridGen

because of the results obtained by the GridGen versions, as reported in Chapter 4.

Summary

This grid-generation algorithm is a combination of different methodologies, each

appropriate at different stages of the algorithm. Watson's incremental insertion algorithm

is used for point insertion. Holmes and Snyder's approach is used for point creation. The

algorithm uses a discretized boundary definition. Clustering and smoothing functions

presented by Anderson are used to improve the effect the grid has on the numerical

solution of the flowfield. Two distribution methodologies are examined, 360-degree and

recursive spectral bisection, although only the 360-degree methodology is implemented for

3-23

the GridGen software. The results achieved by this combined algorithm are presented in

Chapter 4.

3-24

ChAAtr 4: Testing and Rults

introducto~n

This chapter presents the issues involved and the results of the testing of the CFD

unstructured grid generator, GridGen. The testing section rams issues that are important

in testing and focuses on how such testing was performed. The results are also included

for each version of the parallel software. The testing issues involved in the analysis of the

GridGen program include parameter modification, accuracy, timin analysis, scalability

and load balancing. The test plan involved with each of these issues is discussed

individually in this chapter under the appropriate headings.

Parameter Modification

There were a number of parameters that could be modified prior to grid generation.

Modifying these parameters affected the accuracy of the final grid and the time required to

generate the grid. The first two parameters were the maximum aspect ratio and area of

the triangle allowed before a point is inserted at its circumcenter. The value of these

parameters determined the size and shape possible for the triangles included in the final

grid. The values for these parameters were hardooded in the NodeGen program.

There are several parameters associated with the clustering function included in

GridGen. These parameters are defined in the external file Cluster.dat. The first

parameter, do, defines the distance from the surface where clustering mainly occurs. The

second parameter indicates the number of iterations of clustering that the program should

perform. The remaining values represent different values of P, beta, one for each iteration

of the clustering function. The P parameters control how quickly the transition at do

occurs. Normally, the values of P should increase slightly with each iteration. "Three or

four repetitions in which P is gradually increased lead to grids with good clustering near

4-1

the surface of the airfoils, and a reasonably smooth transition region between the clustered

and nonclustered areas is obtained" (Anderson, 1992: 6).

The simple introduction of the clustering function into the basic software had a

significant effect on the number and location of points in the grid. The clustering function

increased the proportion of triangles near an object's surface where the flow varies

significantly and is more important to the determination of the flow field about the object.

This change is shown in Figures 4-1 and 4-2 which were created by Tecplot. Figure 4-1 is

a sample basic grid generated for a nearly cylindrical ellipse with a major axis of 1.0 and a

minor axis of 0.9 on one node. Figure 4-2 shows the same grid after two iterations of

clustering with a do of 0.5 and 0 values of 5.0 and 7.0.

The third set of parameters control the smoothing function. These parameters are

included in the external file Smoother.dat. The first parameter indicates the number of

smoothing iterations the program should execute. The second parameter, mo is the

relaxation factor. This parameter controls the size of the change in the x and y directions.

Typical values of o are near 0.2. One-hundred to two-hundred smoothing iterations are

normally performed.

Once again, simply the introduction of the smoothing function had visible effects on the

resulting grid. The Tecplot graphs in Figures 4-3 and 4-4 show how smoothing affects a

grid created on two nodes for an ellipse with a major axis of 1.0 and a minor axis of 0.9.

This example used a wo of 0.2 and fifty smoothing iterations. The software always performs

clustering before smoothing.

The other parameters that can be modified, define the surface and far field boundaries

of the grid. The far field boundary is defined by its radius. The distance from the surface

to the far field boundary must be sufficient to include the entire area of interest. The far

field boundary is considered to be in the free stream. The surface boundary is defined in

GridGen as an ellipse or a circle. The size of an ellipse is defined by its major and minor

4-2

50

40

30

20

10

0 10 20 30 40 50 60

Figure 4-1. Grid with no Clustering and no Smoothing

4-3

50

40

30

20

10

0 ,

0 10 20 30 40 50 60

Figure 4-2. Grid with 2 Clustering Iterations and no Smoothing

4-4

50

40

30

20

10

0 ., ..

0 10 20 30 40 50 60

Figure 4-3. Grid with Clustering and no Smoothing

4-5

50

40

30

20

10

0
0 10 20 30 40 50 60

Figure 4-4. Grid with Clustering and 50 Smoothing Iterations

4-6

axes. The size of a circle is defined by its radius. The number of points included an the

surface and far field boundaries is also parameterized. AD of these parameters are set

interactively when creating a new surface definition through GridGen (see Appendix A.

Example 1).

Accuracy

The accuracy of the resulting grid depends on the parameters described earlier in this

chapter. Balancing accuracy and speed of convergence during flow solution involves

tradeoffs. Smaller, more regularly shaped triangles provide a more accurate flow field

solution for a given problem, but the time required for such a solution may be exceedingly

long. The inclusion of clustering and smoothing functions also improves the positive effect

a given grid has on the accuracy of the numerical flow solver solution. The number of

points and triangles in a resulting grid varied as the number of processors used varied. An

example of this was seen on a grid generated about an elliptical surface which consisted of

610 points and 1214 triangles when generated on a single processor, but consisted of 632

points and 1258 triangles when generated on two processors using Version 1 of the

software. This variation occurred because the order of point insertion varies as the

number of processors changes.

The effect of the grid, generated by GridGen, on the accuracy was determined using a

modified version of a sequential first-order finite-volume solver developed by Capt Frank

Smith (Smith, 1992). The modifications included additional parameter passing (rather

than common blocks), providing for grids with centers not located at coordinates (0.0, 0.0),

and several parameter modifications due to the differences in implementation. Tests were

run for an ellipse with a major axis of 1.0 and a minor axis of 0.9, and a circle with a

radius of 1.0. Both 0,st grids included two levels of clustering with a do of 5.0 and P

values of 0.25 and 0.75 and one-hundred smoothing iterations with a relaxation factor of

0.2. The maximum aspect ratio was 3.5 and the maximum area allowed was 25.0. Table

4-7

4-1 shows the accuracy of the numerical solution using various grids as generated by

Version 2 on twr nodes of the iPSC/2 is compared to the results from Capt Smith's

sequential grid generator run on a Sparcstation. This table indicates the maximum error

of the numerical solution of the flow solver using the grid generated by the corresponding

Table 4-1. Maximum Error - Accuracy Results.

Ellipse 0.9 / 1.0 Circle 1.0

GridGen
0.201343

0.776127

Ver 2

Capt Smith's 0.026967 0.004016
Grid Program

software. The results, as shown, indicate that the parallel GridGen software provides a

grid which results in a numerical solution less accurate than the grid generated by the

sequential software. An exact comparison of the grids generated by the parallel and

sequential cannot be accurately made, however, for two reasons. The first is the

uncertainty of the flow solver software used to determine the maximum error. The

correctness of the software is not guaranteed because of the difficulties encountered during

the transition of the software modules involved. The second reason is the range and

precision of the floating point numbers available in the hardware. The Sun Sparcstation

implements a 128-bit double-precision number, while the iPSC/2 implements a 64-bit

double-precision number.

Timing

The length of time required by GridGen to generate a given grid was determined

through the use of the iPSC command mclock. The software provided timing results for

4-8

each step in the generation process: boundary generation, initialization, distribution,

generation, smoothing, and output. These code portions correspond to the program units

shown on the software design in Figure 3-3. The times were expressed in milliseconds

based on the time the Unix system used on the execution of the program. These timing

results were compared to each other. The timing varied based on the grid size, the number

of processors, and the number of clustering and smoothing iterations. To compare timing

results for a single parameter, all other parameters were kept equal. Speedup and

efficiency metrics were calculated to determine the effectiveness of parallelizing the code.

Version 1. The average timing results of each section of the code for an ellipse with a

major to minor axis ratio of 1.0 to 0.9 on version 1 of the software is shown in Table 4-2.

Table 4-2. Timing Results for Version 1 1.0/0.9 Ellipse (in milliseconds)

Code Portion 1 Processor 2 Processors

NewInit 80 55

InitGrid 25800 57260

Distrib 3975 5340

Generate 25000 13893

Smoother 54310 54216

Output 4645 4860

Total 113830 135717

There was no speedup for this example as a whole. The psrallel version of the problem

took longer than the sequential. By breaking the code into separate portions it is possible

to see where the problems lie. The portions of the code which are parallelized, Generate

4-9

and Smoother, ran faster on two processors than on one. The smoother, however did not

demonstrate significant speedup because only fifty smoothing passes were used for this

problem. The effect of the number of passes on the speedup in this portion of the code is

discussed earlier in this chapter. On two processors, a speedup of 1.8 and an efficiency of

0.9 was demonstrated on the generation portion of the code. The total time required for

generation of the software was negatively influenced by the addition of the extra points

required to scale the software effectively. As described earlier in this chapter, a significant

timing problem was shown by the times required to initialize the grid. The remaining

times were for portions of the code executed sequentially under either setup, so it is not

surprising that these times were relatively close together.

Version 2. The average timing results of each section of the code for an ellipse with a

major to minor axis ratio of 1.0 to 0.9 on version 2 of the software is shown in Table 4-3.

As occurred on Version 1, a speedup of 1.8 was achieved on the generation portion of the

software on two nodes. A total speedup of 1.3 was also realized on two nodes. Further

speedup on additional nodes was not achieved. This lack of speedup was due to the

communications requirements of the software. As tht number of processors increases, more

communication and synchronous operation is required to add a single point. This

synchronization is occasionally the result of deadlock avoidance. The avoidance methods

often result in the abandonment of useful work done by a processor. This work must then

be reaccomplished. The InitGrid portion of Version 2 requires over twice the time required

by Version 1 on one processor. This occurrence is a direct result of the added complexity of

the code that both the sequential and parallel portions of the code share.

Scalability / Load Balancing

The scalability and load balancing features of the software are intertwined. A lack of

load balancing eliminates the possibility of scaling beyond a certain point. The testing

involved in this analysis included increasing the problem size and/or the number of

4-10

Table 4-3. Timing Results for Version 2 1.0/0.9 Ellipse (in milliseconds)

Code 1 Processor 2 Processors 4 Processors

Portion

Newinit 45 35 70

InitGrid 63520 63280 62890

Distrib 3880 3925 4040

Generate 150615 84570 111000

Smoother 71330 64325 70855

Output 6070 5670 6065

L Total 295515 221875 254960

processors used to generate the grid. Increasing the problem size was limited to increasing

the number of surface and far field boundary points. On the iPSC/2 available at AFIT, the

number of processors was limited to eight.

Version 1. Version 1 of GridGen was minimally scalable. The scalability varied

depending on the shape of the surface and the number of extra points added to the initial

grid. Cylindrical or nearly cylindrical surfaces scaled better than markedly elliptical

surfaces. This occurred because of the increased number of triangles required at the

trailing and leading edges of an ellipse. Even cylindrical surfaces, however, required

additional points to be included in the initial grid. The extra points reduced the

dependence on neighboring triangles located on separate processors. This occurred only

because of the lack of interprocessor communication during point insertion. The program

could only add new points when all the triangles affected by the new point and their

neighbors were assigned to the same processor. When the addition of extra points allowed

4-11

the software to scale to two processors, there were several iterations during which no

useful work was completed. This occurred because a specific set of triangles had to be

grouped on the same processor before a point could be added at the circumcircle of the

triangle that needed to be changed.

The results of the addition of extra points were varied. Grid generation for cylindrical

and nearly cylindrical surfaces scaled to two processors with the addition of extra points.

The addition of points at only the two initial boundaries (straight up and straight down)

was not successful. This type of addition actually made the problem worse because it

increased the int.rdepondence of triangles. The addition of points overcame the problem

only when eight boundaries (every 45 degrees) on two processors were used. The number

of points required at each boundary depended on the shape of the surface. Sometimes, a

single point served to decompose the grid sufficiently, so only one point per boundary was

added. Decidedly elliptical surfaces did not scale to two processors, even when additional

points were added. This lack of scalability was a result of the interdependence of triangles

on the leading and trailing edges of the surface which are more concentrated for an

elliptical object than for a cylindrical one.

The effects of the addition of extra points on the timing of the grid generation algorithm

was demonstrated by the timing differences seen in the initial grid creation portion of the

code. In one test case, the only modification was the addition of a second processor. The

main difference in the time the grid generation required was during the creation of the

initial grid. On one processor, the initial grid generation required an average of 25800

milliseconds. On two processors, twenty-four additional points were added on the

boundaries. The time required for initial grid generation averaged 57260 milliseconds.

Version 2. Although this version was capable of running on any number of nodes, the

improvement gained was limited to two nodes. This limit was caused by the

interdependence of the triangles making up the initial grid. The interdependence caused a

4-12

large number of messages to be exchanged between nodes, and coWon time th

dominated computation time.

4-13

Chapter 5: Conclusions and Recommendations

Introduction

This chapter presents the conclusions and recommendations resulting from this thesis

research. The conclusions section discusses the results of the tests described in Chapter 4.

This discussion includes the level of success achieved by the complete implementation and

the differences between the successes of the different versions of the software. The

recommendations section includes recommendations for GridGen code improvements and

continued research in the area of parallel grid generators.

Conclusions

Both versions achieved a speedup of 1.8, or an efficiency of 90%, for the generation

portion of the software on two nodes. Neither version achieved further speedup. Version 1

ran almost twice as fast as version 2, but could not execute on multiple nodes for some

cases because of the interdependence between triangles. To successfully parallelize the

algorithm, message passing is required to allow nodes access to trian& es not assigned to

them. The addition of message passing in version 2 required additional coding for deadlock

detection and avoidance. This additional coding caused run times to decrease, even when

the code was executing on only one node.

The desired speedup was not achieved by this implementation of this algorithm as

applied to simple CFD surfaces on the Intel iPSC/2. The initial grid consisted of a small

number of triangles stretching from the surface to the boundary. New points were added

at the circumcenter of the triangles. The shape of the triangles caused many triangles to

be affected when a new point was added because the new point was included in the

circumcircles of many other triangles. The processors containing all affected triangles

required synchronization. This synchronization limited the amount of time the processors

could perform useful work in parallel.

5-1

Although both versions demonstrated an efficiency of 0.9 for the generation portion of

the software, well above the 0.7 mentioned in Chapter 1, the comparisons are for parallel

code running on one and two processors. A more accurate comparison would be the

parallel code on two processors and sequential code on a single processor. It can be

concluded that a sequential version of the grid generator could execute faster than the

parallel code, because only Version 2 of the parallel code operates consistently on multiple

nodes, and Version 1 executes twice as fast on a single processor, although the code is

written for parallel execution,.

Recommendations

Code Improvements. There are several possible code improvements that may have a

favorable effect on the efficiency of the code. There are three types of changes that could

be made. The first type involves code changes that would save space and/or time. The

second type includes changes that would improve the readability and maintainability. The

final type of change is more complicated. It involves changing the approach to coding a

portion of the code.

There are several examples of the first type of change. Throughout the code, there are

times when searching the triangle or point list is implemented. For modules where this

occurs frequently, an array indicating the location of a triangle in the list may be

appropriate. The location array indicates which processor the triangle is assigned to, but

not where the triangle is located on a processor's triangle list. This is not a consideration

for the code executing on the host because the location of a point or triangle on the host's

list is the same as the point or triangle identification number. A related change is

modifying the location array to use a smaller integer type (such as INTEGER*2). This

would save space on the processors. This is possible because only the number of processors

need to be represented. Another, related, change involves the elimination of passing

messages to the host indicating the location of new or modified triangles. This change is

5-2

possible because the host does not use the information after the initial distribution of

nodes.

A change that may result in improved speedup for Version 2 of the software is to

include the addition of extra points as was done in Version 1. The results, however, may

be the same as occurred on Version 1 where the InitGrid portion of the code slowed the

total time to the extent that the code ran faster on one node than on two.

There are several changes that would increase the readability and maintainability of

the code. The first of these changes involves moving the code involved with taking care of

the message requests of other nodes from the main modules and into a separate

subroutine. This block of code is included in two places in the NodeGen program and in

the cluster subroutine. The second change is relatively minor. The addition of

EXTERNAL lines in each module would indicate to futare users which subroutines are

external. Another change that would increase the usability and maintainability of the

software would be to modify the code to read the maximum aspect ratio and area values

from a file. This change would provide easier access to these parameters and eliminate the

need to modify the code to change the parameters.

The final type of change involves looking for solutions to problems that exist in the

execution of the program. As the number of nodes used by the program increases, the

number of deadlock situations also increases. This leads to a greater number of point

additions that are cancelled and must start over at a later time. One possible solution

would be to alter the code location where each node begins execution. A delay could also be

included to prevent a node from moving on to its next triangle immediately if there are no

outstanding messages. A careful balance must be struck to eliminate repetitive code

execution and avoid excessive delays.

Another example of the final type of change involves attempting to modify the order in

which the triangles are examined to increase continued load balancing. If all processors

began triangle examination on the same side of their boundaries, then the load balancing

5-3

may remain morn even. Currently, if two processors begn triangle examination ner the

same boundary, one processor dominates the boundary and gains more new triangles than

the other, thus altering the load balance.

If this software is used for grid generation in the future, the accuracy of the numerical

solution possible for grids generated by this software must be validated. A separate

interface could be written to move the output of the grid generator on the iPSC/2 to the

Sparcstation for solving the flow field. The range and precision limits introduced by the

hardware must still be considered.

Future Research. Further research in the area of parallel CFD grid generation using

Delaunay triangulation should focus on other methods of point creation and insertion. To

be successful on simple surfaces, researchers will need to determine a way to decouple the

interdependence of the triangles in the initial grid. A possible avenue of research is to use

a divide and conquer method for point generation. This type of algorithm would allow

processors to perform Delaunay triangulation on separate portions of a grid and then

define the areas between the separate areas. The methods used in this research may be

more applicable for complex grids in which the interdependency of the triangular elements

is not as pronounced as it is for a simple circle or ellipse. Other types of flows, such as

internal flows, should also be examined. Adaptive gridding should be examined once a

successful parallel implementation of a single-pass grid generator is complete.

Researchers have shown that recursive spectral bisection is a successful domain

decomposition technique for CFD applications. For the initial grid generation process, RSB

may be especially costly in terms of time. Because of the long triangle sides in an initial

grid, the "cuts" made by a RSB distribution method will be similar to the simple 360-degree

methodology used in the GridGen software. RSB is much more likely to be useful after the

initial grid generation is complete and there are a large number of triangles and ways to

distribute the triangles amongst processors. A parallel version of RSB is also an important

topic for continued research because of the time required to distribute a grid using RSB.

5-4

Summary

This research demonstrated one possible combination of methodologies that was not

successful in achieving continued speedup on parallel processors, specifically the Intel

iPSC/2. Further research is required to determine if using Delaunay triangulation, rather

than advancing front, in conjunction with parallel computing is a valuable tool for

unstructured grid generation for CFD applications.

5-5

Appendix : Sam-pie Proram Sessions

This is a sample run on one node for an ellipse object, including the creation of the input

files.

c386 94:gridgen
Do you want to generate new files?

Y
Enter Surface file name

surface.dat
Enter Far Field file name

farf.dat
Select Body Type (enter corresponding number) define surface

1) Elliptical Cylinder
2) Circular Cylinder

1

Enter the radius of the far field boundary:
25
Enter the number of far field points:

30
Enter the number of surface points (on each side):

50
Enter the semi-major axis length:

1.0
Enter the semi-minor axis length:

.9

Distributing Grid

Generating Grid

0 132 258 -- Grid Generation
0 401 796 -- Iterations
0 480 954 -- Node ID, Num Pts,
0 491 976 - Num Tris

Clustering Triangles

Smoothing Grid

Enter the name of the output file:
testl.out
Enter the title for the file:

A-1

'31lipso 0.9 / 1.0 on 1 Nodel

Number of Points: 777
Number of Triangles: 1548

Start Time 350
NewInit 560
InitGrid 63770
Distrib 4200
Generate 149760
Smoother 72030
Output 6090
Total Time 296460

This is a sample run for the same ellipse on two nodes without creating the input files.

c386 97:gridgen
Do you want to generate new files?

n
Enter Surface file name

surface.dat
Enter Far Field file name

farf.dat

Distributing Grid

Generating Grid

0 70 129
1 70 129
0 195 353
1 220 405
0 232 424
1 272 506
1 276 513
0 237 433

Clustering Triangles

Smoothing Grid

Enter the name of the output file:
test2.out

Enter the title for the file:

A-2

• ilip.o 0.9 / 1.0 an 2 Nodes'

Number of Points: 728
Number of Triangles: 1450

Start Time 370
NewInit 30
InitGrid 63550
Distrib 3920
Generate 84720
Smoother 63980
Output 5650
Total Time 221880

A-3

Bibliography

Agarwal, Ramesh K "Development of a Navier-Stokes Code on a Connection Machine."
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, a ,d Applications.
917-924. March 1989.

Anderson, Kyle W. Grid Generation and Flow Solution Method for Euler Equations on
Unstructured Grids. NASA Technical Memorandum 4295. NASA, April 1992.

Angus, I.G. and W.T. Thompkins. "Data Storage, Concurrency, and Portability: An Object
Oriented Approach to Fluid Mechanics," Proceedings of the 4th Conference on Hypercubes,
Concurrent Computers, and Applications. 925-929. March 1989.

Arthur, Trey. and Michael J. Bockelie. A Comparison of Using APPL and PVM for a
Parallel Implementation of an Unstructured Grid Generation Program. NASA Contractor
Report 191425. NASA, January 1993.

Barszcz, Eric, Tony F. Chan, Dennis C. Jespersen, and Raymond S. Tuminaro.
"Performance of an Euler Code on Hypercubes," Proceedings of the 4th Conference on
Hypercubes, Concurrent Computers, and Applications. 933- 940. March 1989.

Barth, Timothy J. "Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler
and Navier-Stokes Equations," AGt. -D Special Course on Unstructured Grid Methods for
Advection Dominated Flows. AGARD Report 787: 6-1:61, May 1992.

Beran, Philip S. "Analysis And Overview Of CFD Algorithms," presented at the
Computational Fluid Dynamics Short Course. Air Force Institute of Technology, Wright-
Patterson AFB OH, September 1992.

Braaten, Mark E. "Computational Fluid Dynamics on Hypercube Parallel Computers,"
Proceedings of the 4th Conference on Hypercubes, Concurrent Computers, and Applications.
949-951. March 1989.

Braaten, Mark E. "Parallel Computation of the Compressible Navier-Stokes Equations
with a Pressure-Correction Algorithm," Proceedings of the 5th Distributed Memory
Computing Conference. 463-467. Charleston SC: IEEE Computer Society Press, April
1990.

Committee on Physical, Mathematical, and Engineering Sciences. Grand Challenges: High
Performance Computing and Communications. National Science Foundation. 1991.

DeCegama, Angel L. Parallel Processing Architectures and VLSI Hardware. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1989.

Duff, lain S., Roger G. Grimes, and John G. Lewis. User's Guide for the Harwell-Boeing
Sparse Matrix Collection. Harwell Laboratory, Oxon England and Boeing Computer
Services Seattle WA, 1988.

Fortran Compiler. Green Hills Software, Inc. 1987.

BIB-1

Gane, Chris and Trish Sarson. Structured Systems Analysis: tools and techniques. New

York NY: Improved System Technologies, Inc., 1979.

George, P.L. Automatic Mesh Generation. Chichester England: John Wiley & Sons, 1991.

Hauser, Jochem and Roy Williams. "Strategies For Parallelizing a Navier-Stokes Code on
the Intel Touchstone Machines," International Journal for Numerical Methods in Fluids,
Vol 15. 51-58. John Wiley & Sons, Ltd, 1992.

Hendrickson, Bruce, and Robert Leland. "An Improved Spectral Load Balancing Method,"
Proceeding of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
Vol 11. 953-961. Philadelphia: SIAM, 1993.

Holey, J. Andrew and Oscar H. Ibarra. "Triangulation, Veronoi Diagram, and Convex Hull
in k-Space on Mesh-Connected Arrays and Hypercubes," 1991 International Conference on
Parallel Processing Vol III. 147-150. 1991.

Intel Corporation. iPSC`/2 Fortran Programmer's Reference Manual. Beaverton OR: Intel
Scientific Computers, 1988.

Leete, Charles A., Barry W. Peyton, and Richard F. Sincovec. "Toward a Parallel Recursive
Spectral Bisection Mapping Toc%," Proceeding of the Sixth SLAM Conference on Parallel
Processing for Scientific Computing, Vol 11. 923-928. Philadelphia: SIAM, 1993.

Lewis, Ted G. and Hesham El-Rewini. Introduction to Parallel Computing. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1992.

rIdhner, Rainald, Jose Camberos, and Marshall Merriam. "Parallel Unstructured Grid
Generation," in Unstructured Scientific Computation on Scalable Multiprocessors. Eds.
Piyush Mehrotra, Joel Saltz, and Robert Voigt. Cambridge MA: MIT Press, 1992.

Long, Lyle N., M.M.S. Khan, and H. Thomas Sharp. "Massively Parallel Three-
Dimensional Euler/Navier-Stokes Method," A/AA Journal, Vol 29, No 5. 657-666. (May
1991).

Mavriplis, D.J., Raja Das, Joel Saltz, and R.E. Vermeland. "Implementation of a Parallel
Unstructured Euler Solver on Shared and Distributed Memory Architectures,"
Supercomputing '92 Proceedings. 132-140. IEEE Computer Society Press, Nov. 1992.

Olander, Daryl, and Robert B. Schnabel. "Preliminary Experience in Developing a Parallel
Thin-Layer Navier Stokes Code and Implications for Parallel Language Design,"
Proceedings of the Scalable High Performance Computing Conference (SHPCC). 276-283.
IEEE Computer Society Press, April 1992.

Peyton, Barry W. "RSB Code." Electronic Message. 30 September 1993.

Scherr, S.J. "Implementation of an Explicit Navier-Stokes Algorithm on a Distributed
Memory Parallel Computer," 31st Aerospace Sciences Meeting and Exhibit. 1-9. AIAA 93-
0063. January 1993.

BIB-2

Smith, Frank. An Unstructured 2-Dimensional Grid Generator. AERO 899 Project.
Wright-Patterson AFB OH; Air Force Institute of Technology, 1992.

Stagg, AX, and G.F. Carey. 'Massively Parallel MMD Solution of the Parabolized
Navier-Stokes Equations," Proceedings of the Scalable High Performance Computing
Conference SHPCC-92. 328-335. IEEE Computer Society Press: April 1992.

Tecplot Version 5. Amtec Engineering, Inc., Bellevue WA: January 1992.

BIB-3

"sta

Captain Deborah E. Davis was born on 8 November 1965 in Gold Beach, Oregon. She

graduated from Big Sky High School in Missoula, Montana in 1984. She attended the U.S.

Air Force Academy, graduating with a Bachelor of Science in Computer Science on

June 1, 1988. Upon graduation she received a regular commission in the USAF and was

assigned to the Defense Intelligence Agency located at Boiling AFB in Washington D.C.

She was a Data Communications System Programmer responsible for providing world-wide

intelligence analysts with reliable computer services on both IBM and DEC systems. Her

job duties included installation, troubleshooting, and system administration. In May 1992

she was reassigned as a student in the Graduate School of Engineering at the Air Force

Institute of Technology (AFIT) located at Wright-Patterson AFB, Ohio. Following

graduation from AFIT, she will be assigned to U.S. Strategic Command at Offutt AFB near

Omaha, Nebraska.

Permanent Address: 1185 Vicki Drive

Missoula, MT 59801

V-1

Form Approved
REPORT DOCUMENTATION PAGE MOMB No 0704-o0

Public report•lg burden for this collection of Information is estimated to average I hour per response. including the time for reviewing instructtion. searching ealsting data tacirs.
gathering and maintaining the data needed. and completing and rewiewing the collection of information Send comments regarding this burden estimate of any other a•ect th"s
colliecton of information. including sug etons tfo reducing this burden to *ashinigton ieacdqualers Servces. Directorate for information Operations and Reports. 1215 Jeffertion
ODais Highway. Suite 1204. Arlington. VA 22202-4302, and to the Offfe of Management and Budget. Paperwork Reduction Project (0704-0 1U). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I DEC 93 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A PARALLEL COMPUTATIONAL FLUID DYNAMICS
UNSTRUCTURED GRID GENERATOR

6. AUTHOR(S)

Capt Deborah E. Davis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRISS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Air Force Institute of Technology, AFIT/GCS/ENG/93D-05
WPAFB OH 45433-6538

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aerospace Plane - Joint Program Office
ASC/NAO
Wright-Patterson AFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This research addressed the development of a parallel computational fluid dynamics unstructured grid
generator using Delaunay triangulation. The generator is applied to simple elliptical and cylindrical two-
dimensional bodies. The methodologies used included Watson's point insertion algorithm, Holmes and
Snyder's point creation algorithm, a discretized surface definition, Anderson's clustering function, and a
Laplacian smoother. The first version of the software involved a processor boundary exchange at the end
of each iteration with no inter-processor communications during the iterations. The second version used
inter-processor communication during each iteration instead of the boundary exchange. Version 1
demonstrated a speedup of 1.8 for some portions of the code, but proved to be unscalable for more than
two nodes due to the interdependency of the triangular elements. The results of Version 2 were similar.
Two distribution methodologies, a simple 360-degree distribution and recursive spectral bisection (RSB),
were examined. For the initial grid distribution, the distribution generated by the RSB code would be
similar to the distribution generated by the 360-degree methodology and would require significantly more
time to execute.

14. SUBJECT TERMS 15. NUMBER OF PAGES
86

Fluid Dynamics, Grid, Triangulation, 16. PRICE CODE

Parallel Processing, Computer Programs

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std Z39-18
296-102

